Logarithmus kürzen?

... komplette Frage anzeigen

4 Antworten

soweit ich weiß, ist das nicht möglich. wenn du das "log" oder "ln" davorstellst, ist das ja eine komplett andere lösung am ende. zudem würdest du es dann bestimmt nach x auflösen und dann für x=lösung bestimmt den logarithmus davorsetzen, was dann zu einem komplett falschen ergebnis führt. somit ist das für mich recht sinnlos es wegzulassen.

Antwort bewerten Vielen Dank für Deine Bewertung

Jepp, du kannst die 3 aus dem Logarithmus ausklammern log(x^3)=3log(x)
Dann umstellen und beide Seiten als Potenz von e nehmen:

e^(log(x)=e^(log(64)/3)=(e^(log(64)))^(1/3)
x=64^(1/3)=4

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von HanzeeDent
30.05.2016, 21:49

jopp..

0

Das ist kein Kürzen, weil das Anwenden von Funktionen wie Sinus und Logarithmus keine Multiplikationen sind. Trotzdem ist es möglich, da du links und rechts das Gleiche tust, nämlich dieselbe Funktion anzuwenden.

Daher geht das alles:

a      = b          dann ist auch
sin a = sin b
a²     = b²
log a = log b   (gleiche Basis vorausgesetzt)

und sogar
x^a   = x^b

Die Umwandlung von   logₐ b = x   in   a^x = b   ist allerdings ein völlig anderer Prozess.


Antwort bewerten Vielen Dank für Deine Bewertung

Ja, das geht, das "Kürzen" entspricht dem Anwenden der e-Funktion auf beiden Seiten der Gleichung.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?