Wie viele Shots?

...komplette Frage anzeigen

Das Ergebnis besteht aus 4 Abstimmungen

Stimme der zweiten Hypothese zu! 75%
Stimme der ersten Hypothese zu! 25%
Stimme keiner Hypothese zu! 0%

6 Antworten

Er trinkt doch immer nur einen der 4, also wieso sollten irgendwann plötzlich null dastehen ?
Betrachte doch die Folge der Shots nach jeder Runde:
an = 3, 6, 9, ...
Das ist sogar eine arithmetische Folge und sie geht für n gegen unendlich selbst gegen unendlich.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von AkayaKuromoto
01.07.2016, 00:13

Also Tendenz zu Hypothese 2? ^-^

0
Kommentar von ELLo1997
01.07.2016, 00:14

Ja, die Antwort lautet schlicht und ergreifend unendlich.

1

Kennst du die Geschichte vom Hilbert Hotel?  Google das mal, das ist ganz ähnlich und zeigt, dass beim Umgang mit Unendlich die Anschauung versagt.

Es gibt eine bestimmte Art von Unendlich, die dadurch charakterisiert ist, dass man die unendlich vielen Dinge im Prinzip zählen könnte. Die Shots gehören dazu. Man nennt das "abzählbar unendlich"

Also der Mann hat am Ende immer unendlich viele Shots getrunken. Dabei ist es egal, ob er nur jeden vierten oder alle trinken würden. Denn immer kann man die Shots die er trinkt mit Nummern versehen, 1, 2, 3 und immer so weiter.

Mathematisch gesehen ist das immer das gleiche Unendlich.

Ein weiteres Beispiel: Es gibt unendlich viele natürliche Zahlen 1,2,3...

Gibt es dann doppelt soviele ganze Zahlen (also auch Zahlen mit negativem Vorzeichen)?

Nein, genauso viele. Denn man kann jeder natürlichen Zahl immer eine ganze Zahl zuordnen. Zum Beispiel alle ungeraden Zahlen auf die negativen und alle geraden auf die positiven abbilden. Es sind genauso unendlich viele.

Antwort bewerten Vielen Dank für Deine Bewertung
Stimme der zweiten Hypothese zu!

Es gibt keine Möglichkeit, dass sich die Anzahl seiner Getränke auf null reduziert, da sie von Runde zu Runde nur steigen kann. Somit kommt nur die zweite Hypothese infrage

Antwort bewerten Vielen Dank für Deine Bewertung
Stimme der zweiten Hypothese zu!

Schon bei dem ersten Durchgang hat er 3 Shots über. Das heißt da gibt es schon einen Rest. Und er bestellt weiterhin 4 Shots und trinkt einen

-> 4 Shots - 1 Shot (der getrunken wird) = 3 Shots (die bei jeder Runde übrig bleiben)

Antwort bewerten Vielen Dank für Deine Bewertung

Wenn er unendlich trinkt, dann hat er zum Ende des Abends (das es aber nicht gwben kann, da er ja unendlich trinkt):
1. Eine Alkoholvergiftung.
Und
(A) Keine Shots da stehen, weil der Barkeeper Feierabend machen will und deswegen alles abgeräumt hat.
(B) So viele Shots da stehen, wie Gläser in der Bar vorhanden -1.
(C) So viele Shots, wie auf die Theke passen.
(D) Keine Shots, da die Vorräte der Bar leer sind.
(E) Keine Shots - im Krankenhaus bekommt man keine Shots serviert, wenn man mit einer Alkoholvergiftung eingeliefert wird.
Das ergibt für mich 3 zu 2 für "0 Shots" gegen "endlich viele Shots" :)

Aber wenn man die blöde und doofe Realität außer Acht lässt, dann hat er rein mathematisch unendlich viele Shots vor sich stehen.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von CrEdo85wiederDa
01.07.2016, 01:16

und die Sache mit 0 Shots lässt sich einfach mit lim(4x-x) belegen. Für x gegen unendlich geht auch 4x-x gegen unendlich. Nicht gegen 0.

1
Kommentar von CrEdo85wiederDa
01.07.2016, 01:17

*widerlegen, nicht belegen :)

0
Stimme der zweiten Hypothese zu!

Ist für mich logischer.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?