Wie groß muss ein Fass sein, damit eine möglichst große Oberfläche in Relation zu einem möglichst kleinen Volumen gegeben ist?

...komplette Frage anzeigen

5 Antworten

Zur genauen Berechnung müsste man wissen, ob die Fassdauben (das sind die gebogenen Holzwandbretter) ein Teil eine Kreisbogens oder einer Parabel sind → dann könnte man Formeln für Oberfläche und Volumen erstellen.

Das Verhältnis O/V ist dann die Funktion die möglichst groß werden soll.

Annahme Parabel: Man legt sie so ins Koordinatensystem, dass der Scheitel auf der y-Achse liegt
→ die Koordinaten des Scheitels wären (0/R) ...R ist Radius an dickster Stelle
→ der Rand ist dann (h/2 /r) ... h ist Fasshöhe; r Radius des Deckels
→ daraus ergibt sich Parabelformel f(x) = 4·(r-R)/h² · x² + R

Das Fass entsteht durch Rotation um x-Achse.

Daraus ergibt sich Volumen und Oberfläche durch Integral:

  • V = 𝝅·∫f²(x)·dx in [-h/2; h/2]
  • O = 2𝝅·∫f(x)·√(1+[f’(x)]²)

Vielleicht ist auch nur gemeint, die maximale Oberfläche bei gegebenen Volumen zu errechnen (ich glaube, es fehlen noch Infos für Nebenbedingungen)

Generell wäre es mal ein Ansatz zu einer Lösung (auch wenn ich nicht ganz sicher bin; die Formulierung in der Frage scheint mir nicht ganz eindeutig.

Antwort bewerten Vielen Dank für Deine Bewertung

Oberfläche ~ a^2

Volumen ~ a^3

(~ für "proportional", a eine typische Größe des Körpers)

Also Oberfläche / Volumen ~ a^-1

Das Verhältnis Oberfläche zu Volumen wird also umso größer, je kleiner die Ausdehnung des Körpers wird.

Also: Möglichst klein.

Antwort bewerten Vielen Dank für Deine Bewertung

Ich hatte anfangs versucht die Oberflächenformel selber zu berechnen,
mich dabei jedoch ständig verrechnet, oder ich bin von falschen
Annahmen ausgegangen.

Seltsamerweise hat das Suchen im Internet lange gedauert, ich habe keine Ahnung warum, vielleicht habe ich mit ungeeigneten Suchwörtern gesucht.

Schließlich habe ich jedoch eine brauchbare Webseite gefunden, wo alles berechnet und hergeleitet wird -->

http://www.mathemainzel.info/files/mathwrks/fasscalc.pdf

Meine erste Antwort kannst du getrost in den Müll werfen, die taugt zu nichts.

Antwort bewerten Vielen Dank für Deine Bewertung

Fass -->

V = (1 / 12) * π * h * ( 2 * D² + d²)

O = (1 / 3) * π * h * (2 * D + d)

h = Höhe des Fasses

D = Durchmesser des Fasses an der breitesten Stelle

d = Durchmesser des Fasses am oberen und unteren Rand / Ende

Den Rest muss ich dir selber überlassen.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von precursor
07.02.2017, 23:45

Es kann sein, dass die Formel für die Oberfläche des Fasses falsch ist.

0

Bei gleichem Verhältnis von Höhe zu Dicke ist das Volumen proportional zur Höhe hoch 3 und die Oberfläche proportional zur Höhe hoch 2, Oberfläche zu Volumen also umgekehrt proportional zur Höhe.

Antwort also:  Höhe und damit Dicke, Oberfläche und Volumen möglichst klein.

Dünne und kleine Menschen neigen daher eher zum Frieren als dicke große.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?