Spurpunkte - Mathematik

...komplette Frage anzeigen

3 Antworten

Spurpunkte sind Schnittstellen mit den Achsen. Eine Geradengleichung in deiner x1,x3-Ebene hat schon keinen Schnittpunkt mehr mit der x2-Koordinate. Da bist auch nicht mehr irgendwo im Raum, sondern nur noch auf einer Ebene. Nur noch einen Spurpunkt hat eine Gerade, die in einer Ebene parallel zu einer Achse läuft.

Früher waren das für dich mal die Parallelen zur x- oder y-Achse. In deinem Vektorraum wäre das nun analog entweder
x1 = a oder
x3 = a.

(a ≠ 0)

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Joochen
02.04.2014, 19:31

Wikipedia erklärt Dir, daß im R3 Spurpunkte Schnittstellen mit Ebenen und nicht mit Geraden sind.

Eine Gerade im R3 braucht keine der Koordinatenachsen zu treffen.

0

Zu rechnen ist nichts.


Eine Gerade hat keinen Spurpunkt in einer Ebene, wenn sie zu ihr parallel ist. Die gesuchte Gerade g ist also zur x1,x2-Ebene und auch zur x2,x3- Ebene parallel.

Also ist g (auch) zum Schnit dieser beiden Ebenen parallel, und dieser Schnitt ist die x2-Achse. Deren Gleichung lässt sich ohne Rechnung angeben mit

X = µ (0 1 0).

Antwort bewerten Vielen Dank für Deine Bewertung

Ein Spurpunkt einer Geraden ist der Schnittpunkt mit einer der drei Koordinatenebenen. Damit die Gerade also nur einen Spurpunkt besitzt, muss sie parallel zu zwei Achsen (in deinem Fall zur x1- und x3- Achse sein.

Beispiel: g:x=(1/1/1)+Lambda * (0/1/0).

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von psychironiker
03.04.2014, 00:11

Die Lösung stimmt, aber die gesuchte Gerade ist zu zwei Ebenen parallel, nicht zu zwei Achsen; letzteres ist unmöglich.

Die gesuchte Gerade muss zu zwei Achsen senkrecht sein, aber das ist dann ziemlich "um die Ecke gedacht", finde ich.

0

Was möchtest Du wissen?