Löslichkeit von Zink berechnen?

1 Antwort

Um die Löslichkeit von Zink in einer wässrigen Salzsäurelösung zu berechnen, verwenden wir das Nernst-Gleichung und das Verhältnis der Konzentrationen von \( H^+ \) und \( Zn^{2+} \). Der Ausgangs-pH-Wert der Lösung beträgt 2,5, was bedeutet, dass die \( H^+ \)-Konzentration bekannt ist.

1. **Berechnung der \( H^+ \)-Konzentration:**

\[ [H^+] = 10^{-pH} = 10^{-2,5} = 3,16 \times 10^{-3} \text{ mol/L} \]

2. **Nernst-Gleichung anwenden:**

Die Nernst-Gleichung lautet:

\[ E = E^\circ + \frac{RT}{nF} \ln \left( \frac{[Zn^{2+}]}{[H^+]^2} \right) \]

Für \( Zn/Zn^{2+} \)-Elektrode:

\[ E = -0,76 \, \text{V} \]

Da die Standardbedingungen (25 °C, 298 K) angenommen werden können, setzen wir \( R = 8,314 \, \text{J/(mol K)} \) und \( F = 96485 \, \text{C/mol} \).

\[ E = -0,76 + \frac{8,314 \times 298}{2 \times 96485} \ln \left( \frac{[Zn^{2+}]}{(3,16 \times 10^{-3})^2} \right) \]

3. **Umstellen und Lösung der Gleichung:**

Zuerst berechnen wir den Term:

\[ \frac{8,314 \times 298}{2 \times 96485} \approx 0,0128 \]

Nun setzen wir das in die Gleichung ein:

\[ -0,76 = -0,76 + 0,0128 \ln \left( \frac{[Zn^{2+}]}{(3,16 \times 10^{-3})^2} \right) \]

Da \( E = E^\circ \), ergibt sich:

\[ 0 = 0,0128 \ln \left( \frac{[Zn^{2+}]}{(3,16 \times 10^{-3})^2} \right) \]

Der Logarithmus muss also gleich null sein:

\[ \ln \left( \frac{[Zn^{2+}]}{(3,16 \times 10^{-3})^2} \right) = 0 \]

Das bedeutet:

\[ \frac{[Zn^{2+}]}{(3,16 \times 10^{-3})^2} = 1 \]

\[ [Zn^{2+}] = (3,16 \times 10^{-3})^2 \]

\[ [Zn^{2+}] = 9,98 \times 10^{-6} \text{ mol/L} \]

Die Löslichkeit von Zink in der wässrigen Salzsäurelösung beträgt also:

\[ \boxed{9,98 \times 10^{-6} \text{ mol/L}} \]

Kp ob das richtig ist aber sollte eigentlich wenn da kein Fehler sich eingeschlichen hat.

Woher ich das weiß:Hobby

chemiechemiyai  26.07.2024, 18:52

Hallo i tried to do it as well since it is in my Übblatt. and instead of ''ln(zn2+/h+)'' i put ln(1/Zn2+) where Zn2+ = (H+/ K). i followed the step similar from my answer for th similar type of question but the problem was that question had AgCl?? Im confusedd can u pls explain to me?

Thnx in advance

Schachspiele451  16.08.2024, 21:59
@chemiechemiyai

It sounds like you're trying to apply an approach you've used for a similar problem involving the solubility of silver chloride (AgCl), but there is a key difference between that type of problem and the one involving zinc in hydrochloric acid. Let's clarify the distinction:

### Silver Chloride (AgCl) Solubility Case

For AgCl in a solution, the solubility equilibrium can be described by the solubility product constant (\( K_{sp} \)):

\[ \text{AgCl (s)} \leftrightarrow \text{Ag}^+ (aq) + \text{Cl}^- (aq) \]

Here, you can set up an equation like:

\[ K_{sp} = [\text{Ag}^+][\text{Cl}^-] \]

In this context, you might have used the relationship between ion concentrations and the solubility product to solve for the concentration of silver ions in solution, potentially incorporating the Nernst equation if there was an electrochemical aspect.

### Zinc Dissolution in Hydrochloric Acid

The zinc dissolution in hydrochloric acid is a different scenario because you're dealing with a redox reaction rather than a solubility equilibrium:

\[ \text{Zn (s)} \leftrightarrow \text{Zn}^{2+} (aq) + 2e^- \]

For this, the Nernst equation describes the potential of the zinc half-cell:

\[ E = E^\circ + \frac{RT}{nF} \ln \left( \frac{[Zn^{2+}]}{[H^+]^2} \right) \]

Here, the concentration of \( H^+ \) ions affects the equilibrium because they are related to the acidity of the solution, but you're not dealing with a solubility product as in the case of AgCl.

### Key Differences:

1. **Solubility Product vs. Nernst Equation**: 

  - **AgCl**: The concentration of ions is connected by the solubility product \( K_{sp} \).

  - **Zn/HCl**: The concentration of \( Zn^{2+} \) ions is related to the redox potential via the Nernst equation.

2. **Expression Inversion**: 

  - In your case with AgCl, you might have written the expression as \( \ln(1/[Zn^{2+}]) \), assuming some relationship like \( [Zn^{2+}] = [H^+]/K \). This assumption doesn't directly apply to the zinc case, where \( H^+ \) and \( Zn^{2+} \) interact through the redox process, not a solubility product.

3. **Why Your Assumption Leads to Confusion**:

  - The approach \( [Zn^{2+}] = [H^+]/K \) could be derived if you were incorrectly assuming a solubility product or a different kind of equilibrium than what's actually happening here. However, in this zinc dissolution problem, the direct relationship is better captured by the Nernst equation without inverting the terms.

### Summary:

- **AgCl problem**: It's more about balancing ion concentrations based on \( K_{sp} \).

- **Zn in HCl problem**: It's about balancing the redox potential using the Nernst equation, where the correct form involves \( \ln([Zn^{2+}]/[H^+]^2) \) and not its inverse.

Understanding these differences can help you avoid applying the wrong relationships to different types of chemical equilibria and reactions.

Alexand291 
Beitragsersteller
 07.07.2024, 15:19

vielen Dank für Ihre Hilfe. Wofür wird das Volumen in diesem Fall benötigt?

Schachspiele451  07.07.2024, 15:23
@Alexand291

In dieser Berechnung wurde das Volumen der Lösung nicht direkt verwendet. Der Grund ist, dass die Löslichkeit von Zink in der Lösung in mol/L (Molarität) angegeben wird, was bereits ein volumenunabhängiges Maß ist.

Das Volumen könnte relevant sein, wenn Sie die absolute Menge an gelöstem Zink in mol oder Gramm berechnen möchten. In diesem Fall würde man die Molarität mit dem Volumen multiplizieren.