Aus einem kreisrunden Blech ein Quadrat?

... komplette Frage anzeigen

11 Antworten

Ich würde das ao machen:
Ziehe in den Kreis 2 Linien wodurch der Kreis in 4 Gleichgroße Teile eingeteil ist.
Danach verbindest du die Eckpunkte wo der Linie auf den Kreis trifft jeweils mit den anderen. Daraus sollte dann ein Quadrat entstehen.
Nun berechne die Fläche des kreises und des Quadrates. Ziehe dann das Quadrat vom Kreis ab [ Kreis - Quadrat = Ausschuss ]
Dann einfach [ (Ausschuss : Kreis) • 100 ]

Dann solltest du das Ergebnis haben

Antwort bewerten Vielen Dank für Deine Bewertung

Was hast du denn ausgerechnet, als du auf 50% bzw. 20% gekommen bist?
Ich vermute mal, die Frage ist, wieviel Fläche vom Kreis übrig bleibt, wenn das größtmögliche Quadrat ausgeschnitten ist.


Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von anawillswissen
03.07.2016, 14:49

Ich hab eine Skizze gezeichnet und grob geschätzt erstmal weil ich wie gesagt absolut keine Ahnung habe wie ich vorgehen soll.🙄

0

Gemeint ist offensichtlich, wie viel Prozent des quadratischen Bleches für den Kreis anfallen.

Aus einem Quadrat mit der Seitenlänge x kann ein Kreis mit dem Durchmesser x ausgeschnitten werden.

Der Flächeninhalt des Quadrats ist somit x², der des Kreises π*(x/2)².

Der Prozentsatz errechnet sich nun aus dem Quotienten aus Flächeninhalt des Kreises und Flächeninhalt des Quadrats:

p% = (π*(x/2)²)/(x²) = (π/4 *x²)/(x²) = π/4 

≈ 0,7854 = 78,54%

Es fallen also etwa 78,54% des Flächeninhalts des Blechs für den Kreis an.

EDIT: Ich habe die Aufgabe versehentlich umgedreht, deine Aufgabe schaffst du aber mit diesem Ansatz auch. ^^

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach. 

LG Willibergi

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Rubezahl2000
03.07.2016, 14:55

Kann es sein, dass du Kreis und Quadrat verwechselt hast?

1
Kommentar von KnutschKalmar
03.07.2016, 14:56

ich glaube da ist was falsch oder ich verstand es Falsch. Zumindest meinte er das er ein Blech hat als Kreis und daraus ein Quadrat ausgestannst werden soll und nicht andersrum... ich hab das bei dir anderum aufgefasst :D tut mir leid falls ich da falsch mit lieg

0

das fehlt was....Wie viel % Abfall fallen an?.......z.B.

Du musst Dir überlegen welches das grösstmögliche Quadrat ist welches Du aus einem kreisrunden Blech ausschneiden kannst, dann kannst Du die Formeln für die Flächenberechnung von runden und Quadratischen Flächen benutzen und mit etwas Dreisatz hast Du am Ende das richtige Ergebnis...

Antwort bewerten Vielen Dank für Deine Bewertung

Wollen wir mal optimieren?

Wenn die Diagonale des Quadrats der Durchmesser des Kreises ist, passt es sogar gut mit den
Abkürzungen: d = Diagonale = Durchmesser

d = 2r       wie in jedem Kreis
K = π r²

Quadrat gemäß Pythagoras:     2a² = d²
                                                  2a² = (2r)²
                                                  2a² = 4r²
                                                    a² = 2r²           Fläche des Quadrats

Fläche des Kreises sei 100%     
Dann          100%   ≙   π r²   
                      x %   ≙   2r²           das ist das Quadrat

Dann ist x = 100 * 2r² / π r²         r² kürzt sich
              x  =  200/π
              x  =  63,7 %

Das Quadrat hat 63,7 % der Kreisfläche.

Der Verschnitt ist 100 - 63,7 = 36,3 %.


Antwort bewerten Vielen Dank für Deine Bewertung

Das Quadrat besteht aus zwei gleichschenkligen Dreiecken, deren Seite c der Durchmesser des Kreises ist.

Also Fläche des Quadrates von der Fläche des Kreises abziehen und in % umrechnen...

Antwort bewerten Vielen Dank für Deine Bewertung

Kleiner Tipp:

Der Durchmesser vom Kreis ist die Diagonale vom Quadrat. Nutze dann den Satz des Pythagoras.

Antwort bewerten Vielen Dank für Deine Bewertung

male dir ein  quadrat auf.

dann ziehst du die diagonalen . der schnittpunkt ist dann der mittelpunkt deines gesuchten kreises.den zirkel in den punkt und nen kreis zeiehn durch die eckpunkte des quadrats.

alles was außerhalb liegt ist der "abfall" dann

jetzt hast du erst mal ne bildliche vorstellung der aufgabe....


Antwort bewerten Vielen Dank für Deine Bewertung

Die Diagonale des Quadrats ist der Durchmesser des Kreises. Wenn das Quadrat also die Seitenlänge 1 hat, ist der Durchmesser des Kreises Wurzel2, also ca. 1,41.

Antwort bewerten Vielen Dank für Deine Bewertung

Hier fehlt das Wort Verschnitt oder Abfall in der Fragestellung der Aufgabe...

Antwort bewerten Vielen Dank für Deine Bewertung

Der Kreis habe den Radius r. Zeichnet man nun in den Kreis ein Quadrat, dessen Eckpunkte alle auf dem Kreis liegen, dann ist die Diagonale des Quadrats so lang wie der Durchmesser des Kreises. Das Quadrat hat also die Diagonale d = 2r.

Halbiert man das Quadrat, dann entstehen zwei gleich große rechtwinklige Dreiecke, deren Katheten jeweils a lang sind. Dann gilt nach dem Satz des Pythagoras

a² + a² = (2r)²

2a² = 4r²

a² = 2r²

a = Wurzel_aus_2 * r

Das Quadrat hat also die Seitenlänge a = Wurzel_aus_2 * r

Wir berechnen nun die Flächeninhalte von Kreis und Quadrat.

A(Kreis) = pi * r²

A(Quadrat) = a² = 2r²

Differenz der Flächeninhalte bilden:

A = A(Kreis) - A(Quadrat) = pi * r² - 2 r² = r² ( pi - 2 )

Um den prozentualen Anteil des Verschnittes zu bestimmen, teilt man den Inhalt der Differenzfläche durch den Inhalt des Kreises:

p = A / A(Kreis) = r² ( pi - 2 ) / ( pi * r² )

Das r² kürzt sich raus.

p = ( pi - 2 ) / pi = 36,3 %

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?