Wie finde ich heraus auf welcher Seite einer Ebene sich ein Punkt befindet?

... komplette Frage anzeigen

1 Antwort

Hallo,

ganz einfach:

Die Normalenform der Ebene lautet E: (x-p)*n0/|n|, wobei n0 der Normalenvektor ist. Für x, also den Vektor (x/y/z) setzt Du einfach die Koordinaten des Punktes ein. Du rechnest die Geschichte aus. Das Ergebnis ist der Abstand d des Punktes von der Ebene. Ist d positiv, liegen der Punkt und der Koordinatenursprung auf verschiedenen Seiten der Ebene. Ist d negativ, liegen P und der Koordinatenursprung auf der gleichen Seite.

Beispiel: E: [x-(1/-3/1)]*(1/2/2)

P: (9/4/-3)

Einsetzen von P für x:

[(9/4/-3)-(1/-3/1)]*(1/2/2)/|n|

|n| ist der Betrag des Normalenvektors, also die Wurzel aus 1²+2²+2²=Wurzel aus 9=3

Du mußt also den Normalenvektor mit 1/3 multiplizieren; so bekommst Du den Normaleneinheitsvektor (1/3)*(1/2/2)

Ausrechnen der eckigen Klammer:

(8/7/-4)*(1/2/2)*(1/3)

d bestimmen:

8/3+14/3-8/3=14/3

Der Abstand beträgt also 4,667 Einheiten. P und der Koordinatenursprung befinden sich auf unterschiedlichen Seiten der Ebene.

Herzliche Grüße,

Willy

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Pukinn
10.06.2016, 10:01

Danke :) Um also herauszufinden ob ein Punkt auf der gleichen Seite der Ebene ist, in die der Normalenvektor zeigt, prüfe ich erst ob der Normalenvektor in richtung des Ursprungs zeigt oder nicht. Ich rechne also p + n0, setze diesen Punkt ein und merke mit ob das Ergebnis positiv oder negativ ist. Dann setze ich meinen zu prüfenden Punkt ein, und vergleiche das Ergebnis mit meinem gemerkten?

1

Was möchtest Du wissen?