mit einer funktionenschar die steigung im ursprung berechnen?

...komplette Frage anzeigen

2 Antworten

Die Steigung berechnest Du wie gehabt mit der ersten Ableitung, also ft'(x)=3x²-t.

Im Ursprung, also bei x=0 ist die Steigung demnach ft'(0)=-t; da scheint also von Dir eine Angabe zu fehlen. Wahrscheinlich ist die Aufgabe: "Für welches t ist die Steigung im Ursprung -4?"

Bei der anderen musst Du entsprechend bei ft'(2)=8 das t errechnen...

Antwort bewerten Vielen Dank für Deine Bewertung

f(x)=x^3-tx
t>0
Aufgabe1: Steigung im Ursprung, bzw. Ableitung im 0. bzw.  f'(0)=?
So, f'(x)=3x²-t
f'(0)=-t
Das ist deine Steigung im Ursprung.

Aufgabe 2:  für welchen Wert von t der Graph an der Stelle 2 die Steigung 8 
Genauer: Wenn wir wissen, dass f'(2)=8 was ist dann t?

Nehmen wir die zuvor berechnete ableitung:
f'(x)=3x²-t
Verwenden die Infos:
f'(2)=3*2²-t=12-t
OK 12-t muss irgenwie 8 ergeben. Wann geht das?

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?