Trigonometrie Aufgaben Hilfe?


06.01.2020, 23:07

Das sind die Aufgaben


07.01.2020, 00:36

Hier das Blatt

 - (Schule, Mathe, Trigonometrie)

1 Antwort

Hi.

Du brauchst Sinus & Cosinus (guckst Du hier: https://de.wikipedia.org/wiki/Sinus_und_Kosinus#Geometrische_Definition) und den Satz des Pythagoras (a²+b²=c²). Und eventuell musst Du die Formeln umformen, um das Gesuchte zu errechnen.

Wenn ich das richtig sehe (das Photo ist echt schlecht!), dann hast Du bei 1 a) beim linken 3eck Hypotenuse und Gegenkathete gegeben. Mit sin(alpha)=Gegenkathete/Hypotenuse kommst Du auf den Winkel. Beim rechten 3eck hast Du die Hypothenuse gegeben und auf die Ankathete kommst Du, indem Du die 1,3 (?) km Gesamtlänge minus die Ankathete des linken 3ecks nimmst. Damit kannst Du über cos(ß)=Ankathete/Hypothenuse den Winkel rausbekommen. Für Aufgabe b) addierst Du die Gegenkathete des linkes 3ecks mit der des Rechten (da kommst Du mit Pythagoras drauf: a²+b²=c²).

Die zweite Aufgabe ist das Selbe in grün: Höhe Turm ist die Ankathete, Winkel ist (90°-4° = 86°), der Rest ist unbekannt. Auf die Hypotenuse kommst Du mit cos(90°-alpha)=Ankathete/Hypotenuse. Löse nach der Hyp. auf. Dann mach Pythagoras für die Gegenkathete, das ist die gesuchte Entfernung.

Aufgabe 3 ist n bisschen knackiger. Zuerst musst Du die Strecke AB ermitteln. Das machst Du, indem Du die beiden gegeben Winkel von 90° abziehst, das ist der Winkel zwischen AC und CB. Damit kannst Du via Cosinus die Strecke AC berechnen und damit mit Pythagoras AB. Jetzt brauchen wir die Strecke CD. Stell Dir vor, wir würden die Strecke AD verlängern, bis sie die horizontale Linie vom Ballon aus trifft. Da machen wir einen Punkt, den nennen wir E. Die Strecke EC=AB, damit und mit dem bekannten Winkel zwischen EC und CD (15,5°???) können wir via Cosinus CD ausrechnen (Frage a)) und damit via Pythagoras DE. Wenn wir DE von der Ballonhöhe abziehen, dann haben wir die Turmhöhe AD (Frage b)).

Aufgabe 4) Nimm das 3eck ganz links. Das mit 2,2m Ankathete. Rechne die Gegenkathete aus, das ist der erste Stock. Für den zweiten Stock verlängern wir den Fahnenmast nach unten, so dass der das 3eck teilt und 2 daraus macht (wir brauchen einen rechten Winkel für die Winkelfunktionen. Die Breite der 3ecke ist jetzt je 8 m, die Höhe gesucht und der Winkel Fahnenmast-Hypotenuse ist 180°-115°. Bekanntes Spiel, wir haben Winkel und Gegenkathete, mit dem Sinus kommen wir auf die Hypothenuse und mit Pythagoras auf die Ankathete. Und das ist die Höhe des 2 Stockwerks. Jetzt noch das erste Stockwerk plus das 2. plus die 1,5 Fahnenmast, fertig.

Generell: Du brauchst nen Blick für 3ecke. Die müssen rechtwinkling sein, in der Not mach aus einem 3eck zwei Rechtwinklige, wie bei nem Zirkuszelt. Dann musst Du die Formeln von Sin und Cos auswendig können. Dann geht schon viel. Übe einfach noch n paar Aufgaben, dann läuft es.

Entschuldigung, es ist nett das sie versuchen es mir zu erklären aber leider verstehe ich trotzdem nicht ganz was ich berechnen muss und deswegen, können sie mir das nicht ausrechnen mit lösungweg, wäre sehr nett damit ich das besser verstehe

0

Was möchtest Du wissen?