Physik Begegnung zweier Körper?

... komplette Frage anzeigen

2 Antworten

Also angenommen, du legst den Ursprung deines Koordinatensystems in einen der beiden Körper zum Beobachtungsbeginn. Dann hättest du ja folgende Formel für die zurückgelegten Strecken:

s(1) = v(1)*t 

s(2) = -v(2)*t + s(0)   

Dabei ist s(0) die Entfernung des Körpers zum anderen.

Da die Körper sich in entgegengesetzer Richtung bewegen, muss eine negativ (hier v(2)).

Also löst du einfach nach t auf:

s(1) = s(2)

v(1)*t  =  -v(2)*t + s(0)   II +v(2)*t

t*(v(1) + v(2)) = s(0)   II *1/(v(1) + v(2))

t = s(0)/(v(1) + v(2))

Wenn du also nun deine Werte einsetzt erhälst du also:

t = 30m/(10m/s + 5m/s) = 30m/(15m/s) = 2s 

Also treffen sie sich nach 2 Sekunden. 

Die Entfernung die zu diesem Zeitpunkt herrscht:

s(1)(2s) = 10m/s *2s = 20m 

Also bei 20m Entfernung von dem Körper den du als Bezugspunkt gewählt hast, hier Körper 1 mit v = 10m/s.

Antwort bewerten Vielen Dank für Deine Bewertung

Du suchst den Zeitpunkt t0, an dem die beiden Körper zusammen die Strecke 30m zurückgelegt haben. Also der Ansatz ist: s1 + s2 = 30

Allgemein gilt ja bei konstanten Geschwindigkeiten v=s/t, oder nach s aufgelöst s=v*t. Damit stellst du die Gleichungen der beiden Körper für die zurückgelegte Strecke auf und setzt diese in s1 und s2 ein. Dann noch nach t0 auflösen und schon hast dus.

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?