Eine nicht lösbare quadratische Gleichung?

...komplette Frage anzeigen

4 Antworten

falls ihr schon die pq-Formel hattet; dann x²-4x+8=0 wäre nicht lösbar, weil unter der Wurzel eine negative Zahl stehen würde; x= 2 ± √ (4-8)

(x+a)^2=-b, b>0 <=> x^2+2ax+a^2+b=0

Marvo13 27.11.2013, 20:06

^ was heißt das ? ansonsten schon mal danke

0
FelixFoxx 27.11.2013, 20:15
@Marvo13

eine allgemeine Form einer unlösbaren quadratischen Gleichung, für a kannst Du beliebige Zahlen einsetzen, für b beliebige positive Zahlen

1

Quadratische oder andere Gleichungen sind IMMER lösbar! Hier ist gemeint, wenn keine reelle Lösung herauskommt, dann ist es aber eine komplexe Lösung mit einer imaginären Einheit, was erst in der 12. behandelt wird. Dies trifft zu, wenn durch - q unter der Quadratwurzel bzw. einem geraden Wurzelexponent ein negativer Wurzelwert herauskommt. Mathematisch ist das falsch, denn ob +n² oder -n² kommt ja immer ein positiver Endwert heraus und demzufolge muss beim Rückwärtsrechnen (Gegenteil) immer auch ein positiver Wurzelwert stehen.

FelixFoxx 27.11.2013, 20:39

das ist richtig, aber zu hoch gegriffen für einen vermutlich 13jährigen, bleiben wir lieber bei der Lösbarkeit in der Menge der reellen Zahlen.

0
schuhmode 11.12.2013, 08:36

oder andere Gleichungen sind IMMER lösbar!

Ach?

x + 1 = x

Nun bin ich auf die Lösung gespannt...

0

x²=-4

weil du die wurzel nicht aus was negativem ziehen kannst.

Was möchtest Du wissen?