An welchen Stellen x0 hat der Graph der Funktion f die Steigung m (x^5)?

... komplette Frage anzeigen

5 Antworten

f(x) = 0.2 * x ^ 5 + 4 * x ^ 2

An welchen Stellen hat diese Funktion die Steigung m = 0 ?

f´(x) = x ^ 4 + 8 * x

x ^ 4 + 8 * x = 0

Ein x kannst du ausklammern -->

x * (x ^ 3 + 8) = 0

Merksatz --> Ein Produkt hat dann den Wert Null wenn eines seiner Faktoren den Wert Null annimmt.

Du hast hier 2 Faktoren.

Der erste Faktor lautet x

x hat für x = 0 den Wert Null, also x _ 1 = 0

Der zweite Faktor lautet x ^ 3 + 8

Nun müssen wir untersuchen für welche x dieser Faktor den Wert Null hat.

x ^ 3 + 8 = 0

x ^ 3 = - 8 | ^ (1 / 3)

x = -2

Also x _ 2 = -2

Fazit -->

f(x) = 0.2 * x ^ 5 + 4 * x ^ 2 hat an den Stellen x _ 1 = 0 und x _ 2 = -2 jeweils die Steigung Null.

Antwort bewerten Vielen Dank für Deine Bewertung

Nun abstrahiert doch die Steigung Null nicht so.
Es handelt sich einfach um waagrechte Tangenten, also Geraden, die in den Extremwerten parallel zur x-Achse liegen.

Bedingung: f '(x) = 0

Aber dann Obacht geben: für den y-Wert die Originalfunktion f(x) nehmen!

Antwort bewerten Vielen Dank für Deine Bewertung

Die Steigung wird grundsätzlich mit der ersten Ableitung bestimmt.

Die zweite Ableitung hat was mit der Krümmung zu tun. Ab der dritten Ableitung fehlt mir die Anschauung :-)

Antwort bewerten Vielen Dank für Deine Bewertung

Nur die erste Ableitung. Es kann ja durchaus sein, dass eine Funktion an mehreren Stellen eine Steigung von Null hat.

Antwort bewerten Vielen Dank für Deine Bewertung

Meine Vorredner haben schon alles zur ersten Ableitung gesagt.

Du bekommst dann ein "Nullstellenproblem" heißt, du musst herausfinden, an welchen Stellen (x-Werte) die Funktion den Wert 0 (y-Werte) hat.

Hast du sicher auch schon gemacht Bsp: Mitternachtsformel:

x_1,2 = -p/2 +- WURZEL((p/2)^2-q)

-> Berechnet die Nullstellen für Quadratische Funktionen.

in der Regel wirst du aber für eine solche Funktion eher den Anstieg bestimmen müssen, als die Stellen, in der der Anstieg einen bestimmten Wert annimmt.

Antwort bewerten Vielen Dank für Deine Bewertung