Mathematik - Additionsverfahren?
Bei einem Handytarif ohne Grundgebühr wird zwischen Haupt- und Nebenzeit unterschieden. Eine Gesprächsminute in der Hauptzeit kostet 0,39 Euro bzw. in der Nebenzeit 0,19 Euro. Die Monatsrechnung weist Gesprächsgebühr von 37,50 Euro und eine Gesamtdauer aller Einzelgespräche von 150 Minuten aus.
Wie lange hat der Kunde in der Hauptzeit telefoniert, wie lange in der Nebenzeit?
3 Antworten
Ich würde zwar das Einsetzungsverfahren vorziehen, aber es geht auch per Additionsverfahren. Aber erst mal in Mathematisch übersetzen:
http://dieter-online.de.tl/Deutsch_Mathematisch.htm
Wenn jetzt deine Gespräche in der Hauptzeit x sind, dann ist ihr Anteil x * 0,39
Die Gespräche in der Nebenzeit brauchen eine andere Variable: y * 0,19
Die beiden zusammen ergeben die gesamten Kosten:
I 0,39 x + 0,19 y = 37,5 Kosten
II x + y = 150 das sind alle Gespräche zusammen
Um addieren zu können, muss ich die zweite Zeile mit (-0,39) multiplizieren. Dann heben sich die x erst einmal weg.
I 0,39 x + 0,19 y = 37,5 das bleibt
II -0,39 x - 0,39 y = -58,5 das wurde multipliziert
Jetzt addiere ich die Gleichungen
I+II -0,2 y = -21 | /(-0,2)
y = 105 Gespräche in der Nebenzeit
Aus Glg. II hole ich jetzt das x:
x + 105 = 150
x = 45 Gespräche in der Hauptzeit
Präg dir das mal ein und lerne vor allem die Begriffe aus dem Link.
Dann kannst du möglicherweise alle Textaufgaben in Zukunft selber lösen.
Ja, mit Hilfe des Additionsverfahrens kannst Du diese Aifgabe lösen.
Das glaubst du doch wohl selbst nicht, dass jemand das jetzt löst für dich...