Du musst dir zuerst darüber bewusst sein, dass ein Mathestudium nur wenig damit zu tun hat, was in der Schule gelehrt wird. Ich bin jetzt im dritten Studienjahr, allerdings erst im zweiten Jahr der reinen Mathematik. Und ich kann dir sagen, einfach ist es nicht.

Ich schmeiße einfach mal die Zahlen in den Raum, die in etwa in meiner Uni gelten: 1/3 bricht bis Weihnachten ab, 1/3 fällt durch, 1/3 macht weiter. Und das kommt in etwa so hin - in jedem ersten Semester. Und diese Zahlen machen erst einmal Angst.

Aber was die meisten Leute nicht bedenken, ist dass Mathe zulassungsfrei ist. Folglich sind unter den Studienanfängern auch viele, die wegen dem Studiticket eingeschrieben sind. Natürlich schreiben die Leute die Klausuren nicht mit (und fallen pro forma durch). Viele unterschätzen Mathe auch. Im Lehramtsstudiengang sind wir noch gute 30 von 120 Studenten - aber es waren auch 50 Leute dabei, die keine Ahnung hatten welches Zweitfach sie wählen sollten. "Nehme ich halt Mathe, hat ja gute Einstellungschancen". Wieder ein paar, bei denen mich nichts wundert.

Mit dem IQ oder Abischnitt hat meiner Meinung nach das Studium nicht so viel zu tun. Ich gehöre in "meiner" Lerngruppe in der Uni zu den schlechtesten - obwohl ich von der Gruppe her das beste Abi hatte. Daran kannst du nicht festmachen, ob du für Mathe geeignet bist. Das Studium hat nicht mehr so viel mit Lernen zu tun - um gut zu bestehen, muss man die Sachen verstanden haben.

Du vermutest richtig, man braucht ein gewisses Maß von Wille und Motivation - sich auch mal 3 Stunden mit einer Aufgabe zu Hause beschäftigen, auch wenn man nicht den kleinsten Ansatz hat - der Moment, in dem man die Aufgabe versteht und lösen kann ist sooooo toll! Ich finde dazu diese Seite hier recht nett: http://halbtagsblog.de/schule/mathematik-ist-wie-dieses-bild/

...zur Antwort

Du meinst den Oberflächeninhalt, richtig? Da kommt die Formel nicht so ganz hin...

Die Oberfläche setzt sich zusammen aus Grundfläche und Mantelfläche. Diese berechnest du erst separat.

Grundfläche ist recht einfach: Das ist ein Kreis. Der Kreis hat den Radius r, also ist die Fläche r²π.

Mantelfläche ist etwas schwieriger. Wenn du den Kegel "abrollst", hast du einen Kreisausschnitt. Schau dir das z.B. hier (http://www.lehrerweb.at/materials/as/sek/webs/m/geom_koerper/grafik/netz_kegel.gif) mal an.

Die Kreislinie ist so lang wie der Umfang der Grundfläche. Also 2rπ. Der Radius des Kreisausschnitts ist s, dieser Kreis hat den Umfang 2sπ. Damit kann man den Anteil des Kreisausschnitts berechnen: (2rπ)/(2sπ) = r/s.

Die Formel für den Kreisausschnitt ist Anteil * Flächeninhalt Kreis. Also: r/s * s²π = rsπ.

Die beiden Formeln werden addiert, nicht multipliziert.

Also ist die Oberfläche O = r²π + rsπ.

Gemeinsame Faktoren in beiden Summanden sind rπ. Also kannst du rπ ausklammern. Folglich O = rπ(r+s).

Wie genau du auf das ausgeklammerte kommst, weiß ich nicht. Das Problem ist aber auch, dass hier die * und + nicht immer so ganz angezeigt werden...

...zur Antwort

Ein Tetraeder ist aus 4 gleichseitigen Dreiecken zusammengesetzt. Für den Oberflächeninhalt brauchst du den Flächeninhalt von eben diesen Dreicken. Du hast die Seitenlänge gegeben.

Da die Dreiecke gleichseitig sind, kannst du aus der Seitenlänge den Flächeninhalt eines Dreiecks berechnen. Wie genau das geht, hab ich dir als Bild angehangen.

Flächeninhalt eines Dreiecks ist 1/2 * Grundseite * Höhe.

Damit hast du dann ein Dreieck berechnet. Du hast aber nun 4 Dreiecke, die die Oberfläche des Tetraeders bilden. Also multiplizierst du das ganze noch mit 4.

Rechne das einfach mal von Anfang an sauber durch, dann dürftest du auf die gleiche Formel kommen.

...zur Antwort

Du hast die Funktion ja irgendwie gegeben. Sagen wir mal, f(x) = x³.

a) Genau andersherum. Du berechnest die Ableitung f'(x) = 3x² und setzt 5 ein. Lösung ist dann f'(5) = 75.

b) Die Ableitung hast du ja schon. Du stellst dann die Gleichung auf, und zwar 3x² = 3. Also f'(x) einsetzen und dann nach x auflösen. Hier hättest du als Lösungen x= -1 und x = 1.

Hoffe, dass ich dir helfen konnte! Wenn nicht, frag nach :)

...zur Antwort

Offiziell sollten die beiden Tests gleich schwer sein - zumindest sind so die Richtlinien. Meistens sind die Nachklausuren jedoch umfangreicher, da in der Zwischenzeit neue Themen behandelt worden sind und diese dann abgefragt werden.

Mit den Leistungskursaufgaben... ich wäre da vorsichtig. Die Abiaufgaben kann man ja (in NRW) mit Schullogin einsehen. Ich habe mit einer Nachhilfeschülerin die GK Aufgaben meines Abijahres gerechnet, selber war ich im LK. Und die Aufgaben waren relativ gleich. Im LK kommen noch zusätzliche Aufgabenteile zum GK hinzu. Da du Abiturient bist, kann es auch so eine Situation sein.

Aber wenn es tatsächlich "nur" ein Test war und keine Klausur - sei echt froh, dass du nachschreiben durftest. Denn das muss der Lehrer nicht unbedingt anbieten soweit ich weiß.

...zur Antwort

Wenn zwei Dreiecke zueinander ähnlich sind, dann stehen die Seiten zueinander im gleichen Verhältnis. (b) ist zum Beispiel ähnlich zu deinem gegebenen Dreieck, denn

10cm = 25cm, 6cm = 23cm, 12cm = 2*6cm -> Streckungsfaktor ist 2.

Um bei den anderen auszurechnen, ob die Dreiecke ähnlich sind, geh einfach so vor:

  • Seiten der Größe nach sortieren. Also von dem gegebenen 3 < 5 < 6 und bei den anderen je a < b < c (Werte einsetzen)
  • jeweils Quotienten bilden (Brüche), und zwar a/3, b/5, c/6. Also kleinste durch kleinste, größte durch größte etc.
  • wenn die drei Zahlen gleich sind, dann sind die Dreiecke zueinander ähnlich und du hast den Streckungsfaktor berechet. Wenn nicht, dann sind die Dreiecke nicht ähnlich.

Hoffe, dass ich dir helfen konnte :)

...zur Antwort

Erweitern kann ich mir immer sehr gut mit Hilfe einer Pizza vorstellen: Es ist ja genau das gleiche, wenn du eins von zwei Stücken nimmst, oder 2 von 4, ... Sprich, wenn ich alles kleiner schneide und dann entsprechend mehr nehme.

Kürzen ist genau das gleiche - nur andersherum. Du hast eine Pizza, die in 16 Teile zerteilt ist und nimmst dir davon 8. Da kannst du genauso gut Stücke "zusammenkleben", und von 8 Stücken 4 nehmen. etc.

Das nur zur bildlichen Vorstellung.

Mathematisch bedeutet Kürzen, dass du eine Zahl suchst, die sowohl Nenner als auch Zähler teilt. Zum Beispiel sind bei 15/35 sowohl 15 als auch 35 durch 5 teilbar. Also ist dein neuer, gekürzter Bruch (15:5)/(35:5) = 3/7.

Aufpassen musst du nur, dass du auch vollständig kürzt. D.h. solange weiter kürzt, bis es keine Zahl mehr gibt durch die Zähler und Nenner teilbar sind (1 zählt nicht).

Hoffe, dass hilft dir ein wnig weiter :)

...zur Antwort

Versuch mal Abicalc (http://www.abicalc.net/abirechner), mit Hamburg kenn ich mich nicht aus ;)

...zur Antwort

Frag mal nach, warum dein Heft so schlecht bewertet worden ist, damit du es das nächste mal besser machen kannst. Das zeigt der Lehrerin dein Interesse, und du weißt dann auch, worauf sie Wert legt.

Und du kannst sie auch fragen, ob sie mehr Beispiele rechnen kann. Oder dir Tipps geben kann, wo du Beispiele nachlesen kannst.

Ist deine Lehrerin noch recht jung? Ich werde (wenn alles glatt geht) in drei Jahren auf die Schüler losgelassen g und ganz ehrlich, wir haben bislang nichts gelernt was das Unterrichten angeht. Nur Fachliches. Und den Dreh muss man dann auch erst einmal rauskriegen ;)

...zur Antwort

Was sind deine Ansätze/Ideen?

Erster Schritt: errate mal eine Nullstelle (so lange ausprobieren, bis du sie findest)

Dann erst kannst du die Polynomdivision durchführen. Was ist unlogisch an deinen Ergebnissen? Schreib mal was mehr, ich will nicht deine Hausaufgaben machen ;)

...zur Antwort

Generell sind die Zahlen immer relativ ähnlich. Großes ABER ist der Doppeljahr. An meiner Uni wird schon geplant, dass einzelne Veranstaltungen doppelt gelesen werden, und es gibt trotzdem einen NC. Also rechnen die Unis wohl mit seeeehr großen Bewerberzahlen. Von daher - denke, das wird dieses Jahr eher schwieriger...

...zur Antwort

Körper sind Figuren im Dreidimensionalen.

Also Zylinder, Prisma, Pyramide, Kegel, Würfel, Quader, Kugel. Dazu solltest du möglichst alle Formeln kennen (Volumen, Oberflächeninhalt, evtl auch Kantenlänge) und dir auch die Körper vorstellen können, d.h. spontan eine Skizze dazu malen.

Dann gibt es natürlich auch noch zusammengesetzte Körper - Kegel- und Pyramidenstumpf werden meist in der Schule noch als separates Thema behandelt, man kann aber z.B. auch ein "Haus" bauen aus Würfel und Pyramide, oder eine Röhre, wenn man aus einem großen Zylinder einen kleineren entfernt.

Mehr fällt mir spontan nicht dazu ein - du dürftest selber am besten wissen, was ihr in der Schule gemacht habt und was daher drankommen kann

...zur Antwort

Kannst dir ja mal überlegen, welche Kombinationen es für die 15 gibt.

z.B. 3 + 3 + 3 + 3 + 2 + 1 = 15

Dann auf wie viele Arten du diese Kombination erzeugen kannst:

z.B. oben 2* (15 über 2), da es (15 über 2) Möglichkeiten gibt, zwei aus 15 auszuwählen für 1 und 2 und davon noch einmal das doppelte, da die Reihenfolge von 2 und 1 egal ist. Also insgesamt hier 210 Möglichkeiten.

Das addierst du dann alles zusammen.

Wahrscheinlichkeit = günstige Möglichkeiten / alle Möglichkeiten nach Laplace.

Wie viele Möglichkeiten es insgesamt gibt, weißt du ja.

LG primzahl

...zur Antwort
Wenn ich versage...

Hallo, ich weiß nicht wie ich anfangen soll, also ich habe eine schwere Matheschwäche (dyskalkulie) und diese erchwert mir ehrlich gesagt richtig das Leben. Ich habe dieses Schuljahr nur 6 geschrieben nur einmal eine 5 und einmal eine Note 1 die war allerdings in Grammatik ohne was zu berechnen. In den anderen Fächern in ich sehr gut (1-3) ich lerne auch sehr viel und gebe mir auch sehr viel Mühe in Mathe allerdings entscheidet die Probe die wir morgen schreiben pb ich nun die Klasse wiederholen muss oder nicht. Ich habe mich sehr angestrengt und möchte ehrlich gesagt nicht wiederholen, aber ich kann es einfach nicht und mir setzt das auch zu. Über dieses ganze Wochenende habe ich gelernt obwohl ich weiß dass es nichts bringt, ich werde richtig wahnsinnig wenn ich an diese Probe denke ich hatte heute Nacht geträumt, dass ich versage und noch ein Jahr länger auf diese Schule bleiben zu müssen...ich bekome richtige Angstzustände. Meine Dyskalkulie wurde vom Schulpsychologen dieses Jahr erneut bestätigt doch meine Lehrerin möchte nichts berücksichtigen ich weiß sie hat mich auf den Kicker und da sie dazu auch nicht verpflichtet ist mir ein Extra zu bieten tut sie dies natürlich nicht. Nur habe ich solche Angst, ich weiß es ist schwer mir Rat zu geben in so einem Fall. Aber ich bitte um Hilfe ich möchte nicht wiederholen...kann ich das Wiederholen nicht irgendwie verhindern durch meine anderen guten Noten im Zeugnis irgendwie ausgleichen? Ich bin leider auf einer Hauptschule falls euch das noch was nützt, ich war mal auf einer Realschule, aber Mathematik macht mir ein Teil im Leben kaputt. Ich kann nicht in dieses Buch mit diesen komplizierten Aufgaben zu schauen ohne zu weinen und Angst zu bekommen, man kann es mir noch so oft erklären ich kann es einfach nicht. Es it so unfair, dass Schreibschwäche unterstützt wird und die die nicht mal richtig zählen können nicht mal ansatzweise Unterstützung bekommen :*(

...zum Beitrag

Aus welchem Bundesland kommst du? Es gibt ja längst nicht in jedem Bundesland dazu Regelungen, aber vielleicht bei dir ja schon...

Eigentlich müsste es einen Nachteilsausgleich geben - von dem, was ich so in meinem Lehramtsstudium in NRW lerne. Aber die Realität sieht leider oft anders aus. Wenn ich das richtig lese, ist deine Dyskalkulie bestätigt worden von einem Psychologen? Da müsste eigentlich was zu machen sein...

Habt ihr einen Vertrauenslehrer (oder irgendein anderer Lehrer, mit dem du gut auskommst)? Vielleicht kannst ein Kollege mehr bewirken als der Schulpsychologe... Und sonst vielleicht ein gemeinsames Gespräch - Schulleitung, Psychologe, deine Eltern und du - mit der Lehrerin. Schlimmer kann es ja kaum noch kommen.

Kannst du vielleicht erst einmal ein Attest bekommen, damit du nicht morgen schreiben musst? Denn dein Text hört sich sehr verzweifelt an...

Fühl dich virtuell gedrückt :)

...zur Antwort

Ich würde sagen, NEIN. Ich studiere jetzt fast 2 Jahre und meine Allgemeinbildung ist grottenschlecht.

Die große Frage ist ja, wie man Allgemeinbildung definiert - hatten wir mal in einer Veranstaltung. Generell:: lesen, lesen, lesen. Sonst fällt mir nichts dazu ein, wie du deine Allgemeinbildung verbessern kannst. Es gibt auch immer mal wieder Bücher, die wichtige Fakten zusammenfassen. Oder Allgemeinbildungs-Abreißkalender (die Dinger finde ich recht lustig).

...zur Antwort

mich wundert gerade, dass es bei so vielen zu gehen scheint - ich kenn auch Unis, die Kurse aufeinander aufbauen, sodass man die erste Prüfung bestehen MUSS (ist an meiner Uni zwar in Mathe nicht so, dafür aber zB in Chemie oder Englisch)

Schau sicherheitshalber mal im Studienverlaufsplan/Modulhandbuch nach.

...zur Antwort