Ist die Erde ein Sandwich, wenn auf jeder Seite eine Scheibe Toast plaziert wird?

Ja 52%
Nein 36%
Unsicher 12%

25 Stimmen

6 Antworten

Ja

Theoretisch gesehen ja.

Praktisch gesehen ein sehr großes Sandwich und rund.

Ja

Wenn du es dann auch in die Hand nehmen kannst. Besser wäre es, wenn der Toast die Erde auf der jeweiligen Seite komplett abdeckte, denn das greift sich besser. Aber wer genau will einen Toast, in dem jeder Dreck drin ist?

Alternative Frage: Ist die Erde eine Auflaufform, wenn ich ein Ei fallenlasse?

Aus Faulheit habe ich das mal einen Textinterpreter ausführen lassen:

1) Wie groß müsste eine „Scheibe“ sein, um eine Erdkugel-Hälfte abzudecken?
  • Erdradius R≈6,371 km=6,371,000 mR \approx 6{,}371\ \text{km} = 6{,}371{,}000\ \text{m}R≈6,371 km=6,371,000 m.
  • Die Oberfläche einer Hemisphäre (also einer Erdhälfte) ist Ahalb=2πR2A_{\text{halb}} = 2\pi R^2Ahalb​=2πR2.
  • Das ergibt Ahalb≈2,55032×108 km2A_{\text{halb}} \approx 2{,}55032\times 10^{8}\ \text{km}^2Ahalb​≈2,55032×108 km2 ≈ 255.032.236 km²
  • In Quadratmetern: ≈ 2,5503×1014 m22{,}5503\times 10^{14}\ \text{m}^22,5503×1014 m2.

Wenn man also eine „Scheibe“ hätte, die tatsächlich die gesamte halbkugelige Oberfläche (also alles von einem Pol bis zum Äquator rundherum) abdecken sollte, dann müsste diese Scheibe eine Oberfläche von ~2,55×10^14 m² haben — also absurd groß.

2) Wie viele normale Toastscheiben bräuchte man dafür (anschauliche Zahl)?
  • Angenommen eine Toastscheibe hat etwa 120 cm2=0,012 m2120\ \text{cm}^2 = 0{,}012\ \text{m}^2120 cm2=0,012 m2 (das ist eine grobe Annahme).
  • Anzahl Scheiben für eine Hemisphäre: 2,55×1014 m20,012 m2≈2,13×1016\frac{2{,}55\times 10^{14}\ \text{m}^2}{0{,}012\ \text{m}^2} \approx 2{,}13\times 10^{16}0,012 m22,55×1014 m2​≈2,13×1016 Scheiben.
  • Für beide Seiten des „Sandwichs“ (also zwei Hemisphären) wären es grob 4,25×10^16 Toastscheiben.

Das ist eine unvorstellbar große Zahl — Milliarden-, Billionen-mal alles, was praktisch denkbar ist.

3) Physikalische Probleme (kurz)
  • Form: Eine flache (rigide) Scheibe kann niemals eine Kugel „umschließen“ — sie würde die Kugel höchstens an einem Punkt berühren. Um die Kugel wirklich zu „umklammern“, müssten die Scheiben gebogene Schalen (kugelförmige Hälften) sein.
  • Material/Masse: Selbst wenn du flexible, formbare Scheiben hättest, würde deren eigene Schwerkraft, Gewicht und die Atmosphäre sie zusammenpressen/zerreißen/abbrennen — nicht lebensfreundlich.
  • Atmosphäre/Luftdruck: Zwei große, dünne Hüllen über die Erde zu legen, würde die Atmosphäre einschließen/ändern — das hätte katastrophale Folgen.
  • Mechanik: Befestigung/Tragstruktur, thermische Dehnung, Windlast — alles praktisch unmöglich bei der Skala.
4) Topologische/semantische Sicht
  • Sprachlich kann man die Erde zwischen zwei Scheiben als „Sandwich“ bezeichnen — es ist eine erlaubte Metapher.
  • Physikalisch/topologisch ist es kein typisches Sandwich (bei dem zwei Brote eine Füllung direkt einrahmen), sondern eher „zwei Scheiben, die die Kugel an zwei Seiten berühren“.
Nein

Wir haben keine Indizien, die auf einen oder mehrere gigantische intergalaktische Toastbäcker hindeuten, die die Erde verarbeiten wollen.

Wenn es jemanden gäbe, der die Erde wirklich essen wollte, würde er sie vermutlich als Konfektkugel mit zartschmelzendem Kern empfinden, auch wenn drumherum teils ein ziemlich bewohnter Bewuchs auf ihr klebt.

Aber vielleicht ist die Erde auch einfach noch nicht fertiggebacken. Das Leben auf der Oberfläche dürfte sich ja absehbar ziemlich ausdünnen...

Nein

Wie jeder weiß, ist die Erde eine Pizza.

Sie war mal ein kugelförmiger Teigklumpen, den die Menschen platt gemacht, mit Müll belegt und gebraten haben. Sie schmeckt aber gut.

Ein Toastbrot auf beiden Seiten macht aus einer Pizza kein Sandwich.

Ja

Falsch abgestimmt.

Die Erde wäre praktisch nur der Schinken, der für sich kein Sandwich sein kann. Alles zusammen schon.