Licht mit einer Wellenlänge von 300 nm fällt auf Kalium. Die emittierten Elektronen haben eine maximale kinetische Energie von 2,03 eV.?

1 Antwort

a) Einfallende Energie: E_ein=h * c / lambda Einheitenabgleich E [J] = J*s * m/s * 1/m

Austretende Energie: E_aus=2,03 eV= 2,03 * 1,62*10^(-19) J

Energiebilanz E_austritt=E_ein - E_aus

E_austritt = h * c / lambda - 2,03 eV E_austritt = 6,62 * 10 ^ (-23) Js * 300000 m/s / (300 * 10 ^(-6) m) - 2,03 * 1,62 * 10 ^(-19) J

Hab keinen Taschenrechner hier, musst selber ausrechnen.


btsvt  19.12.2022, 10:18

Falsch

gustl1988  30.11.2015, 22:53

b) Die Energie der einfallenden Photonen E_photon=E_ein = 6,62 * 10 ^ (-23) Js * 300000 m/s / (300 * 10 ^(-6) m)

gustl1988  30.11.2015, 23:08
@gustl1988

Der Spannungsgrenzwert berechnet sich aus:

E_kin = (-e) * (-U_grenz)

E_kin ist hier

E_ein - E_austritt = E_kin

Die Formel für E_ein habe ich oben geschrieben, E_austritt ist konstant und hast du in a) berechnet. Mit dem neuen E_kin kannst du U_grenz ausrechnen

U_grenz = e * E_kin

E_kin = v²*m/2

e=-1,7 * 10^(11) C/kg

m= Masse Photon

v = c = 300000 m/s

und nun alles einsetzen und eintippen. Verstanden hast du es so sicher nicht, frag nochmal und ich erklär es in Worten =)