Hallo

Wird eine Spule in einem Magnetfeld bewegt, so wird an ihren (Draht-)Enden eine elektrische Spannung induziert. Das Magnetfeld kann auch veränderlich sein und die Spule unbewegt. Der Generator bzw. der Transformator funktioniert auf diese Weise.

Für höhere Spannungen vergrößere mal die Windungszahl der Spule, drehe den Stabmagneten schneller oder nimm einen stärkeren Magneten.

Ach ja, ich würde die Spule nicht unbedingt längs der Feldlinien bewegen...

...zur Antwort

Hallo

Geräte, die eine Leistung von 2000 W oder mehr umsetzen (Waschmaschine, Spülmaschine, Elektroherd, etc., benötigen in einem Haushalt einen Stromkreis mit einer eigenen Sicherung, da ansonsten die Sicherung rausfliegt.

Hat man also 2 Fritteusen, die man gleichzeitig benutzen will, so braucht jede ihren eigenen Stromkreis.

...zur Antwort

Die Rechnung sieht gut aus, die Beschriftung 6 m irritiert, ich würde noch ein c vor's m machen. Ich bekomme allerdings einen Winkel von etwa 36,7° heraus. Ich weiß nicht, ob ein Lehrer das bemängeln würde.

...zur Antwort

Hallo

jetzt verstehe ich deine Frage:

Die 6 kommt daher, dass du die Flächen von allen 6 rosa eingefärbten Flächen angeben sollst!

Bei b sieht es ähnlich aus:

Du musst sämtliche blau eingefärbten Begrenzungsliinen beachten, also die von allen 6 dargestellten Segmenten!

Ich hoffe, das hilft dir weiter.

...zur Antwort

Nein,

aber es gibt andere Beziehungen zwischen Sinus und Cosinus:

sin²(alpha) + cos²(alpha) = 1

und:

sin(alpha) = cos(90° - alpha) = cos(alpha - 90°)

cos(alpha) = sin(90° - alpha) = sin(alpha + 90°)

und:

tan(alpha) = sin(alpha)/cos(alpha)

...zur Antwort

Hallo,

wenn du nicht weißt, wie man vom Nenner 4 auf den Nenner 20 kommt, dann musst du folgende Aufgabe lösen:

x * 4 = 20

Beide Seiten durch 4 dividieren:

4 * x/4 = 20/4 = 5

Linke Seite durch 4 kürzen, das geht bei einem Produkt immer!

Nun weißt du, dass du den Bruch 3/4 mit 5 erweitern musst, d.h. Zähler und Nenner mit 5 multiplizieren, da du ja beim Erweitern nichts veränderst, denn du könntest ja (bei einem Produkt) jederzeit wieder durch 5 kürzen!

...zur Antwort

Hallo

Natürlich ist das eine Strahlensatz-Anwendung, etwas Ähnliches habe ich schon mal hier berechnet von einem Gebäude und seinem Schatten.

Die 1,7 m merken wir uns mal, die werden am Schluss zur Masthöhe dazu gerechnet.

Die Grundlinie hat ganz links den Mast, nach 90 m die 8 m hohe Mauer, 15 m hinter der Mauer ein Kreuzchen machen, ebenso 45 m hinter der Mauer.

Dann kann man zweimal den 2. Strahlensatz anwenden:

15 m/8m = 105 m/(x + u)

sowie

45 m/8 m = 135 m/x

Jetzt hat man 2 Gleichungen mit 2 Unbekannten:

x + u = 8 m * 105 m/15 m = 56 m

ebenso

x = 8 m * 135 m/45 m = 24 m

Wegen

u = 56 m - x folgt

u = 56 m - 24 m = 32 m

Masthöhe h = 2u + x + 1,7 m = 64 m + 24 m + 1,7 m = 89,7 m

Die 2u kommen daher, dass der in 45 m Entfernung von der Mauer stehende Beobachter doppelt so viel vom Mast sieht wie der Beobachter in 15 m Entfernung von der Mauer. In meiner Zeichnung auf Millimeterpapier kommt das hin.

...zur Antwort

Lösen von quadratischen Gleichungen mithilfe der quadratischen Ergänzung:

x² + 4x - 5 = 0

x² + 4x = 5

x² + 4x + 4 = 5 + 4

(x + 2)² = 9 **

x + 2 = +-Wurzel(9) = +- 3

x_1,2 = -2 +- 3

x_1 = -2 + 3 = 1

x_2 = -2 - 3 = -5

** Benutzt wurde die 1. binomische Formel:

(a + b)² = a² + 2ab + b²

...zur Antwort

Hallo, gute Frage.

Man findet dafür (leider) viele Begriffe:

stadium = Stadion-Form, Rennstrecke

capsule shape = Kapselkörper

rounded rectangle = abgerundetes Rechteck

pill badges, pill-shaped = Pillenform

Wurstkörper

rounded button

...zur Antwort

Hallo

Ich würde die Aufgabenstellung versuchen zu codieren, denn oft kann Algebra zur Lösungsfindung benutzt werden.

Beispiel:

Ein Ziegelstein wiegt 1 kg plus die Hälfte seines Gewichts. Wie viel wiegt der Stein?

g: Gewicht des Steins

Codierung:

g = 1 kg + g/2

g - g/2 = 1 kg

g/2 = 1 kg

g = 1kg * 2 = 2 kg

...zur Antwort

Hallo

Ich bekomme 604,5 m heraus (gerundet)

Ich habe das untere Dreieck genommen, da der Winkel 15° hier direkt auftaucht (Scheitelwinkel).

tan(15°) = 0,267949 = h/l

l = h/0,267949 = 162 m/0,268 = 604,48 m

...zur Antwort

Hallo

Zeichne mal die beiden Punkte in ein Koordinatensystem ein. Du erkennst dann ein rechtwinkliges Dreieck mit den Katheten 4 und 12.

d² = 12² + 4² = 144 + 16 = 160

d = Wurzel(160) = 12.65 (gerundet)

Dasselbe bekommt man durch Vektorrechnung heraus:

d = D - B = (6 | 6) - (2 | -6) = (4 | 12 )

|d| = Wurzel(4² + 12²)

...zur Antwort

Hallo

mach dir eine Skizze, sonst geht es nicht. x-Achse nach rechts, y-Achse nach hinten, z-Achse nach oben.

B und C liegen in der unteren Ebene, da z = 0 ist, z liegt in der oberen Ebene, hier ist z = 3. Die Höhe des Quaders ist also 3.

B und C liegen auf dr Rückseite des Quaders, H liegt über D.

Für A und D ist y = 0.

A liegt rechts von der y-Achse, D liegt links von der y-Achse.

Um die Buchstabn A, B, C und D zu erhalten, musst du entgegen dem Uhrzeigersinn wandern.

E liegt über A, F liegt über B und G liegt über C, auch entgegen dem Uhrzeigersinn laufen.

Das müsste nun aber reichen...

...zur Antwort

Hallo

Bei einer Summe kannst du den zu addierenden Vektor an die Spitze des Vektors setzen, zu dem addiert werden soll. Dabei darfst du den zu addienden Vekor parallel verschieben. Der Summenvektor geht dann vom Anfangspunkt des ursprünglichen Vektors zum Ende (Spitze) des zu addierenden Vektors.

Bei einer Differenz (Subtraktion) kannst du die Spitzen beider Vektoren miteinander verbinden. Der Pfeil zeigt dann zu dem Vektor, von dem subtrahiert wird. Alternativ kannst du den zu subtrahierenden Vektor an die Spitze des ursprünglichen Vektors in entgegengesetzter Richtung durch Parallelverschiebung ansetzen und wie bei der Addition verfahren.

Hier gibt es aber nichts zu rechnen, du sollst ja nur zeichnen.

Beim Rechnen werden die einzelnen Werte komponentenweise (getrennt nach x, y und evtl. auch z addiert bzw. subtrahiert.

...zur Antwort