Das ist eine Aufgabe aus einer älteren Abiturprüfung in BW im Bereich Wahlteil. Zur Berechnung der Matrizenmultiplikation darf da der TR verwendet werden.
Du musst überlegen, ob es eine Permutation ist oder aber eine Kombination aus einer Anzahl von Elementen.
Eine Permutation ist z. B. du hast eine Zahlenfolge 1;2;3;4;5 und möchtest alle möglichen Zahlen haben, die du mit diesen 58 Ziffern bilden kannst. Dann ist das 5!
Eine Kombination mit "49 über 6" ist z. B. das Lottospiel. Aus einer Anzahl von Elementen (49 Kugeln) wird eine Kombination von 6 Kugeln ausgewählt. Die "49 über 6" nennt man auch Binomialkoeffizient. Dieser berechnet hier z.B. die Anzahl aller möglichen Kombinationen von 6+ Kugeln aus den 49 Kugeln. Da kommst du auf etwa 13,5 MIllionen Möglichkeiten.
Nein. Eine zusammengesetzte Funktion kann in ganz D monoton steigend steigend sein, sie kann aber an einer bestimmten Stelle eine Knick aufweisen, dann ist sie dort nicht differenzierbar.
Ja, Produktregel korrekt angewandt. Jetzt noch vereinfachen,
PQ ist kein Punkt, sondern eine Achse. Also soll w(x) an der Achse durch die Punkte P und Q gespiegelt werden, d. h. w(x) ist um 40 Einheiten nach rechts zu verschieben. Damit erhalten wir:
Dein Induktionsstart ist schon mal falsch.
Induktionsstart ist a_1=a_0+2=3+2=5
Danach geht es weiter.
Aufgabe 13: Wenn das Volumen verdreifacht wird, verdreifacht sich das Volumen. Die Fragestellung ist bescheuert.
Was soll denn falsch sein? Bis dahin doch alles korrekt.
Du musst zunächst einmal alle Wahrscheinlichkeiten zusammenstellen zu der 0 Fragen, 1 Frage, 2 Fragen, 3 Fragen, 4 Fragen usw. bis30 Fragen richtig beantwortet sind. Die Zahlen sind dann dein x_i. Also zu jedem einzelnen x_i das P(x_i) bilden. Dann muss die Summe gebildet werden von 0 bis 30 von P(x_i) * x_i. Da muss dann irgendein Wert um die ca. 10 - 14 rauskommen._
Im Modus des TR kann man den "komplexen Modus" einstellen. Dann rechnet er auch \sqrt(-4) korrekt mit 2i aus.
A) 6 SchülerInnen. Das sind die 4 und 2, die sowohl in E als auch in S eingekreist sind, zwei davon sind zusätzlich auch noch in K, das wird aber nicht explizit gefrgt.
Gesamt Glechung durch a dividieren, dann ist das a bei x² weg.
Dann wird der Taschenrechner wohl Reht haben und du dich verrechnet.
Händisch:
Multipliziere die 1. Gleichung mit (-1+2i) und die zweite Gleichung mit (1+i). Dann erste Gleichung - 2 Gleichung lässt ds x-Glied herausfallen. Nach y auflösen. y dann in 1. oder 2. Gleichung einsetzen und nach x auflösen. Fertig.
Nein. Die Auflösung des Binoms führt zu -6d und nicht zu -2d.
Es gilt wiederum:
^ a=120 ml Koffeein
0,5l Cola entsprechen 45 mg Koffein, somit, nach 4,5 Stunden:
Gleichung nach b auflösen. Dein Ansatz war vollkommen richtig.
So:
Eine Zahl in der Mitte von zweien ist immer:
In deinem Fall also
L(t) sei die Licjtintensität, dann gilt:
Weiterhin gilt:
bzw.
Gleichung nach q auflösen und fertig.
Es gibt den y-Achsenabschnitt und die sogenannten Nullstellen.
Für de y-Achsenabschnitt musst du x auf 0 setzen und y ausrechnen.
Für die Nullstellen musst du y auf null setzen und x ausrechnen. Dann trägst du die beiden Punkte auf der y- bzw. x-Achse ab und verbindest die beiden Punkte und das ist dann die Gerade, die du zeichnen sollst.
Und wie würdest du dann eine Gerade beschreiben, die je weiter du nach rechts geht, umso kleiner wird?