Komplexe Zahlen von Normalform in Polarform?

...komplette Frage anzeigen

2 Antworten

z = a + j·b

φ = arctan (b/a) = arctan (Im/Re)   (Phasenwinkel φ im Bogenmaß)

Beispiele:  │a│ = 4  und   │b│ = 3

Deiner Rechnung entsprechend erhält man:

1. Quadr.   z1 = 4 + 3·j      →   φ1 = arctan 0,75 ≈ 0,6435 rad ≈ 37°

2. Quadr.   z2 = - 4 + 3·j   →   φ2 = π – φ1 ≈ 2,4981 rad ≈ 143° = 180° - 37°

3. Quadr.   z3 = - 4 - 3·j   →   φ3 = π + φ1 ≈ 3,7851 rad ≈ 217° = 180° + 37°

4.Quadr.    z4 = 4 - 3·j    →   φ4 = 2·π – φ1 ≈ 5,6397 rad ≈ 323° = 360° -
37°

Probe:

1.Quadr.   z1 = 4 + 3·j      →   φ1 = arctan 0,75 ≈ 0,6435 rad ≈ 37°

2. Quadr.  z2 = - 4 + 3·j    →   φ2 = arctan (- 0,75) ≈ - 0,6435 rad ≈ - 37° =
180° - 37°

3.Quadr.   z3 = - 4 - 3·j    →   φ3 = arctan 0,75 ≈ 0,6435 rad ≈ 37° = 180° + 37°

4.Quadr.    z4 = 4 - 3·j    →   φ4 = arctan (- 0,75) ≈ - 37° = 360° – 37°

Gruß, H.

Vielen Dank.

0

...    :-)   

Entschuldigung, aber was soll das bitte?

Ich erhoffe mir ernste Antworten, das ist kein Spaß.

0

Was möchtest Du wissen?