Frage von huntr645, 42

Wie gebe ich eine Ebene in parameterfreier Form an?

Ich habe die Ebene

E:x = ( 5 / 3 / 1) + s ( 3 / 1 / 1) + t (2 / - 1 / 0)

errechnet.

Diese soll ich nun in parameterfreier Form angeben.

Heißt das, ich soll sie in Koordinatenform angeben?

Und wie genau stelle ich das an?

Antwort
von eddiefox, 18

Hallo,

die parameterfreie Darstellung einer Ebene im ℝ³ ist die Ebenengleichung

(E)    ax + by + cz + d = 0 

mit reellen Zahlen a, b, c, d,  die zu bestimmen sind.

In dem Fall der Ebenengleichung ist der Vektor mit den Koordinaten
(a / b / c) ein Vektor, der auf der Ebene E senkrecht steht.

Du brauchst also nur einen Vektor zu bestimmen, der zu den Vektoren
( 3 / 1 / 1) und (2 / - 1 / 0)  senkrecht steht.

Hast du einen solchen Vektor gefunden (Kreuzprodukt), dann ersetzt du a, b, c mit dessen Koordinaten.

Es bleibt dann nur noch d zu bestimmen.

Das d findest du dann, indem du die Koordinaten des Punktes
( 5 / 3 / 1) in die Ebenengleichung (E) einsetzt und nach d auflöst.

Gruß

Kommentar von huntr645 ,

http://www.mathebibel.de/parameterform-in-koordinatenform ich habe mich jetzt exakt an das gehalten und "x1+2x2-5x3-6 = 0" raus. Bin ich richtig vorgegangen?

Kommentar von Willy1729 ,

Stimmt genau.

Kommentar von huntr645 ,

Super, danke! Ich hätte vielleicht noch eine Frage, wäre sehr sehr dankbar, falls die jemand beantworten kann. Und zwar sollte ich gerade den Abstand des Punktes P ( 6 / 14 /-12) zu der oben genannten Ebene berechnen. Raus habe ich am Ende 34,43 LE. Stimmt das? In der Rechnung kommen nämlich bei mir ziemlich große Bruchzahlen vor, die mich etwas verunsichern.

Kommentar von eddiefox ,

Schaun wir mal:

d = (6 + 2•14 -5•(-12) -6) / √(1²+2²+(-5²)) =

88 / √30 ≈ 16,0665

Da hast du dich irgenwo verrechnet, oder ich. ;-)

Antwort
von Roderic, 18

http://www.onlinemathe.de/forum/Ebenengleichung-in-parameterfreie-Form-bringen

Antwort
von Kaenguruh, 28

Es reicht auch die Normalenform (das ist einfacher). Hier ist es beschrieben.  https://de.serlo.org/entity/view/1893

Kommentar von huntr645 ,

http://www.mathebibel.de/parameterform-in-koordinatenform ich habe mich jetzt exakt an das gehalten und "x1+2x2-5x3-6 = 0" raus. Bin ich richtig vorgegangen?

Keine passende Antwort gefunden?

Fragen Sie die Community