Frage von Helenelaut, 559

Welche positiven Zahlen unter 60 haben genau 6 positive Teiler?

Expertenantwort
von hypergerd, Community-Experte für Mathematik, 467

Das ist die Zahlentheorie-Funktion divisorsigma(0,n)

sie gibt für ein Argument n die Anzahl der Teiler aus.

Der Iterationsrechner zeigt im Beispiel 131 nicht nur den Algorithmus, sondern rechnet auch gleich online (unter 20 ms) eine ganze Liste in Tabellenform aus:

http://www.gerdlamprecht.de/Roemisch_JAVA.htm#ZZZZZ0131

siehe Bild

zu ralphdieter: auch die "Lästigkeit bei großen Zahlen" interessierte mich:

divisorsigma[0,222222222289900123456789012356] = 384

(jedoch nicht mit diesem Rechner, da double und JavaScript dazu ungeeignet)

Kommentar von hypergerd ,

hier eine ganze Liste:

http://oeis.org/A000005/b000005.txt

Expertenantwort
von Suboptimierer, Community-Experte für Mathe & Mathematik, 450
Zahl Teiler        Anzahl Teiler
-----------------------------------
12: 1 2  6 3  4    6
18: 1 2  9 3  6    6
20: 1 2 10 4  5    6
28: 1 2 14 4  7    6
32: 1 2 16 4  8    6
44: 1 2 22 4 11    6
45: 1 3 15 5  9    6
50: 1 2 25 5 10    6
52: 1 2 26 4 13    6
Kommentar von Bennet122 ,

Sollten es nicht 6 positive Teiler sein ? 

Dann wäre doch 32 die einzige Lösung oder nicht?

Expertenantwort
von Willibergi, Community-Experte für Mathe & Mathematik, 369

Interessiert dich primär das Ergebnis oder auch der Lösungsweg?

LG Willibergi

Kommentar von ralphdieter ,

Die anderen machen das offenbar mit roher Gewalt. Wie würdest Du vorgehen?

Meine Idee setzt an der Vielfachheit der Primfaktoren an: Für p≠q hat p^m·q^n genau (m+1)·(n+1) Primfaktoren. Für 6 Stück bleiben folglich nur Zahlen der Form p⁵ sowie p²q¹, also:

  • 2⁵ (32)
  • 2²·3 bis 2²·13 (12, 20, 28, 44, 52)
  • 3²·2 bis 3²·5 (18, 45)
  • 5²·2 (50)

Für größere Zahlen kann aber auch das lästig werden. Hättest Du es genauso gemacht, oder hast Du einen anderen Ansatz parat?

Kommentar von Bennet122 ,

Sollten es nicht 6 positive Teiler sein ? 

Dann wäre doch 32 die einzige Lösung oder nicht?

Kommentar von ralphdieter ,

Hu? p²q hat die Teiler { 1, p, p², q, pq, p²q }. Sind p,q beide prim und verschieden, sind diese sechs Teiler paarweise verschieden.

(Oben habe ich einen Fehler gemacht: Ich meinte "genau (m+1)·(n+1) Teiler" - nicht Primfaktoren).

Expertenantwort
von everysingleday1, Community-Experte für Mathe & Mathematik, 339

1 hat nur den Teiler 1

2 hat die Teiler 1 und 2

3 hat die Teiler 1 und 3

4 hat die Teiler 1, 2 und 4

5 hat die Teiler 1 und 5

6 hat die Teiler 1, 2, 3 und 6

7 hat die Teiler 1 und 7

8 hat die Teiler 1, 2, 4 und 8

...

56 hat die Teiler 1, 2, 4, 7, 8, 14, 28 und 56

57 hat die Teiler 1, 3, 19 und 57

58 hat die Teiler 1, 2, 29 und 58

59 hat die Teiler 1 und 59

...

Die Teiler der Zahlen dazwischen musst du nun selbst herausfinden. Dann kannst du dir deine Frage selbst beantworten.

Antwort
von Agent008JayG, 325

12, 18, 20, 28, 32, 44, 45, 50, 52

Keine passende Antwort gefunden?

Fragen Sie die Community