Hallo, kann mir jemand bei einer Matheaufgabe helfen?

... komplette Frage anzeigen

3 Antworten

Hallo,

C läßt sich leicht berechnen, weil Du mit denselben Werten von A auf B kommst, wie von D auf C.

(2/1/0)+(3/-4/0)=(5/-3/0)

(3/-4/0) ist somit der Verschiebungsvektor, um von D auf C zu kommen.

(6/4/0)+(3/-4/0)=(9/0/0), Punkt C.

Um die Koordinaten der Spitze zu berechnen, brauchst Du zunächst einmal den Schnittpunkt zwischen den Diagonalen der quadratischen Grundfläche. Die Diagonalen eines Quadrates halbieren sich bekanntlich gegenseitig. Der Schnittpunkt der Diagonalen liegt somit auf der halben Strecke C-A bzw D-B

C-A=(9/0/0)-(2/1/0)=(7/-1/0) Mit C als Stützvektor erhältst Du den Vektor

(9/0/0)+r*(7/-1/0).

D-B=(1/7/0)

Mit Stützvektor D ergibt das den Vektor (6/4/0)+s*(1/7/0).

Um den Schnittpunkt zu ermitteln, setzt Du beide gleich, wobei Du Dir die dritten Koordinaten, die alle Null sind, sparen kannst:

(9/0)+r*(7/-1)=(6/4)+s*(1/7)

Das ergibt das Gleichungssystem:

7r-s=-3
-r-7s=4

s=7r+3 (Gleichung I)

Einsetzen in II:

-r-49r-21=4

50r=-25

r=-0,5

Einsetzen in s=7r+3:

s=-3,5+3=-0,5

Um den Schnittpunkt zu ermitteln, setzt Du nun entweder r oder s in die jeweilige Vektorgleichung ein, z.B. in (6/4/0)+s*(1/7/0):

(6/4/0)-0,5*(1/7/0)=(5,5/0,5/0)

Da die Spitze der Pyramide 6 m senkrecht über diesem Punkt steht, hat sie die Koordinaten (5,5/0,5/6).

Um das Volumen der Pyramide zu bestimmen, berechnest Du den Betrag einer der Grundseiten, z.B. B-A und multiplizierst das Ganze mit 2, weil 2 ein Drittel von 6, der Höhe ist, und das Volumen einer Pyramide die Grundfläche mal ein Drittel Höhe ist.

Da wir bereits den Verschiebungsvektor berechnet hatten, nämlich (3/-4/0), nimmst Du einfach dessen Betrag, also die Wurzel aus (3²+(-4)²+0²)=Wurzel aus 25=5

Das Quadrat ist wieder 25, die Grundfläche also. 25*2=50.

Das Volumen beträgt demnach 50  m³.

Um zu prüfen, ob der Schatten der Spitze auf das Gebäude gegenüber fällt, brauchst Du den Schnittpunkt des Vektors, der Lichtquelle und Spitze verbindet, mit der x2, x3-Ebene. Dessen x3 Koordinate muß zwischen 0 und 8 liegen.

S= Spitze, L=Lichtquelle. S-L=(5,5/0,5/6)-(30/0/0)=(-24,5/0,5/6).

Zusammen mit dem Stützvektor (30/0/0) ergibt diese den Vektor 
(30/0/0/)+r*(-24,5/0,5/6)

Die x2,x3-Ebene hat die Form s*(0/1/0)+t*(0/0/1)

Gleichsetzen:

(30/0/0)+r*(-24,5/0,5/6)=s*(0/1/0)+t*(0/0/1)

Gleichungssystem:

-24,5r=-30
0,5r-s=0
6r-t=0

Also ist r=-30/-24,5=60/49

s=0,5r=30/49

t=6r=360/49

r zu kennen reicht aber bereits, weil uns dieser Wert durch den Vektor, auf dem Lichtquelle und Spitze liegen, zum gesuchten Punkt auf der x2,x3-Ebene führt:

(30/0/0)+(60/49)*(-24,5/0,5/6)

Hier interessiert letztlich nur die x3-Koordinate, die angibt, in welcher Höhe der Schatten auf die Gebäudewand trifft:

(60/49)*6=360/49=7,35.

Dieser Wert liegt zwischen 0 und 8; der Schatten trifft die Gebäudewand in einer Höhe von 7,35 m.

Herzliche Grüße,

Willy


Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Willy1729
09.05.2016, 19:46

Vielen Dank für den Stern.

Willy

0

Ich empfehle dir für derartige Aufgaben, mal bei www.matheraum.de vorbeizuschauen. Allerdings erwartet man dort zuerst mal auch Eigenleistungen der Fragesteller. Es ist ja (hoffentlich) nicht anzunehmen, dass du mit der Aufgabe garnix anfangen kannst ...

Antwort bewerten Vielen Dank für Deine Bewertung

naja mit vektoren ist das alles recht einfach zu lösen. erstmal zu teil a

oc = od + ba (vektoren)
du setzt den vektor zwischen a und b einfach an d dran um auf c zu kommen.
vllt hilft dir das schon für die restlichen Aufgaben

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von VIELLERNERIN
08.05.2016, 10:13

Mein Problem ist eher die Aufgabe c. Aber danke für den Ansatz

0

Was möchtest Du wissen?