Frage von General001, 53

Was habe ich falsch gerechnet?

In einer i-131-Quelle finden in 1s 10^5 Zerfälle statt wie viele nach 48 Tagen?

Also meines Erachtens nach ist gegeben die Aktivität 10^5 Bq die Halbwertszeit (indirekt).

nun teilt man die 48 Tage durch die Halbwertszeit wodurch man sechs Halbwertszeit and erhält. Anschließend rechnet man 10^5 Bq * 0,5^6 und kommt auf 1562,5 Bq. Was ist daran falsch? Mein Lehrer hat nämlich gerechnet 510^5 (Anzahl der Kerne aus der vorherigen Aufgabe) * 0,5^6.

Hat er nun den Fehler gemacht oder ich?

Schon mal vielen Dank für eure Antworten

Antwort
von WeicheBirne, 20

Für radioaktive Zerfälle kannst Du die Formel

N = N_0 * 0,5^( t  / τ )

verwenden. Dabei gilt

N_0 = Anzahl an radioaktiven Atomen zum Zeitpunkt t = 0

N = Anzahl an radioaktiven Atomen zum Zeitpunkt t

τ = Halbwertzeit

Die Anzahl an Zerfällen M nach einer bestimmten Zeit kannst Du ganz einfach als

M = N_0 - N = N_0 ( 1 - 0,5^( t  / τ ) )

ausrechnen.

Damit wir die Anzahl an Zerfällen nach 48 Tagen ausrechnen können, müssen wir zunächst die Werte für τ und N_0 kennen.

Die Halbwertzeit von I-131 beträgt etwa 8,02 Tage oder 692928 Sekunden.

τ = 8,02 d = 692928 s

Wir wissen, daß nach einer Sekunde 10^5 Zerfälle stattgefunden haben.

10^5 =  N_0 ( 1 - 0,5^( 1  / 692928 ) ) = 0.000001 N_0

N_0 = 10^11

Zum Zeitpunkt t = 0 s sind also 10^11 Iodatome vorhanden.

Nachdem wir τ und N_0 berechnet haben können wir nun M für t = 48 d berechnen.

10^11 ( 1 - 0,5^( 48 / 8,02 ) = 9,84 * 10^10

Kommentar von General001 ,

Wer hat jetzt recht?

Kommentar von WeicheBirne ,

Keiner von Euch beiden hat es richtig gemacht. Die korrekte Formel zum Ausrechnen der Anzahl an zerfallenen Atomen nach 48 Tagen ist

M = N_0 ( 1 - 0,5^( t / τ ) )


Wenn Ihr nicht die richtige Formel verwendet, werdet Ihr leider auch nicht das richtige Ergebnis erhalten. 



Diese Begründung ist für Dich vielleicht nicht sehr zufriedenstellend. Darum möchte ich Dir hier einige Hinweise geben, an denen Du merken kannst, daß Dein Lehrer und Du falsch gerechnet haben:



Zunächst zu Dir:

1) Du nimmst in Deiner Argumentation an, daß 10^5 Bq die Halbwertszeit ist. Die Halwertzeit steckt aber schon in der 6 vom Term 0,5^6.  Das ist nämlich

0,5^( t / τ )

mit

t = 48 und τ = 8

10^5 ist die Anzahl an Zerfällen, die Du in der ersten Sekunde des Experiments beobachtet hast und ist ein Wert für M in der Formel

M = N_0 ( 1 - 0,5^( t / τ ) )

Wie Du siehst hängt der Wert 10^5 auch von N_0 ab und nicht nur von der Halbwertzeit τ. Außerdem muß die Halbwertzeit immer eine Zeit sein und nicht 1 geteilt durch Zeit. Achte immer auf die Einheiten!!!

2) Du  sollst berechnen wie viele Zerfälle nach 48 Tagen stattgefunden haben. Das Ergebnis muß eine Anzahl sein und kann auf keinen Fall die Einheit s^-1 haben. Du merkst also schon an den Einheiten, daß Deine Formel nicht stimmen kann. Noch einmal: Achte immer auf die Einheiten!!!

3) Dein Endergebnis für die Anzahl an Zerfällen nach 48 Tagen muß größer sein als die Anzahl an Zerfällen nach einer Sekunde. Die Anzahl an Zerfällen nach 48 Tagen ist ja die Anzahl an Zerfällen nach einer Sekunde plus die Anzahl aller Zerfälle, die anschließend passieren. Wenn Du also ein Ergebnis erhältst, das kleiner als 10^5 ist, liegst Du falsch.




Zu Deinem Lehrer:


Wenn ich Dich richtig verstehe hat er die Formel

(Anzahl der Kerne aus der vorherigen Aufgabe) * 0,5^6

verwendet (keine Ahnung was das 510^5 bedeuten soll).

Wie gesagt muß die Anzahl an Zerfällen mit der Zeit steigen. Nach zwei Tagen ist sie größer als nach einem Tag, nach 96 Tagen ist sie größer als nach 48 Tagen. Die Zeit steckt im Faktor 0,5^6. Wie bereits erwähnt ist das ja

0,5^( t / τ )

Du kannst leicht sehen, daß die Formel

(Anzahl der Kerne aus der vorherigen Aufgabe) * 0,5^( t / τ )

für immer größere Zeiten t immer kleinere Werte liefert. Für 48 Tage hast Du den Faktor 0,5^6 = 0,015625 . Für 96 Tage hättest Du den Faktor 0,5^12 = 0,000244141. Die Formel Deines Lehrers kann also auch nicht stimmen. 

Die Rechnung Deines Lehrers entspricht übrigens der Formel

N = N_0 * 0,5^( t / τ )

Dein Lehrer rechnet aus wie viele Atome nach 48 Tagen noch da sind und nicht wie viele schon zerfallen sind. Du kannst ihm ja mal schöne Grüße von mir ausrichten und ihm das hier zeigen.



Ich bin mir nicht sicher ob Dir jetzt alles klar ist. Vielleicht fragst Du Dich warum

M = N_0 ( 1 - 0,5^( t / τ ) )

die richtige Formel ist. Wenn Du magst kann ich Dir gerne zeigen wir man sie herleitet. Melde Dich doch einfach noch mal im Kommentar wenn Du das möchtest oder wenn etwas anderes unklar ist.

Expertenantwort
von Ellejolka, Community-Experte für Mathe & Mathematik, 22

sehr verwirrende Frage;

am besten, du gibst die ganze Aufgabe und was der Lehrer raushat.

Keine passende Antwort gefunden?

Fragen Sie die Community