Frage von Westerfilde12, 36

Wie verändert sich die Rechteckfläche wenn eine Seite um 50% wächst?

Wie verändert sich die Rechteckfläche wenn eine Seite um 50% wächst?

WIe verändert sich der Flächeninhalt eines Kreises , wenn der Radius halbiert wird?

Antwort
von gfntom, 22

Das bekommt man sehr schnell heraus, wenn man das für 2 Rechtecke / Kreise, die die Bedingung erfüllen, durchrechnet.

Antwort
von ClydefrogXL, 17

na, offensichtlich:

Fläche Rechteck = Seite A mal Seite B
kurz F_alt = a*b
Wenn eine Seite um 50% wächst (zB a halbiert ergibt: c = 1.5*a)
F_neu = c*b = 1.5*a*b = 1.5*F_alt
Also vereineinhalbfacht sich die Fläche.

beim Kreis gilt F_alt = pi * r * r   wenn ich neuen Radius s = r/2 setze habe ich:
F_neu = pi * s * s = pi *r/2 *r/2 = pi * r * r /4 = F_alt/4

Also viertelt sich die Fläche.

um den selben Effekt wie beim Rechteck zu bekommen muss man dort beide Seiten halbieren, was logisch ist, da beim Kreis der Radius in alle Richtungen zeigt. (Selber nachrechnen zur Kontrolle hilft).

Expertenantwort
von Volens, Community-Experte für Mathe, 5

Das sind so Sachen, die man direkt aus den Formeln ableitet.
Rechteck:  A = ab        Nunmehr b um 50% verlängern = 1,5 b
                  A' = 1,5 a b
Die Fläche erhöht sich auch auf das Anderthalbfache.
(Was anderes ist es, wenn man beide Seiten verlängert. Probier's mal!)

Als weiteres Anschauungsmittel noch den Kreis;
A = π r²             Wir verkürzen den Radius auf 0,5 r
A' = π (0,5 r)²
A' = π * 0,5² r³
A' = 0,25 π r²
Die Kreisfläche schrumpft auf ein Viertel.

Antwort
von Zwieferl, 1

Einfach einsetzen in die Flächenformel: Fläche = Länge × Breite

Wenn etwas um 50% erhöht wird, dann sind nachher 150% bzw. das 1,5-fache vorhanden.

A= a·b → A=1,5·a·b

Den Rest kannst du hoffentlich alleine!

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten