Frage von Nahala2001, 97

Wasserfontänen und Parabeln!?

Guten Abend! Ich sitze nun seit längerer Zeit an dieser Aufgabe und bin einfach nur komplett ratlos. Weder weiß ich, wie ich diese Aufgabe angehen soll, noch, wie ich die Definitions- und Wertemenge überhaupt rausfinden soll. Bin einfach schon komplett ausgelaucht und total müde. Ich bräuchte nicht unbedingt die Lösung (wenn doch, dann aber auch bitte mit Erklärung). Ein paar Ideen zum Angehen dieser Aufgabe würden mir schon weiter helfen. Danke im Voraus und noch einen schönen Abend! ~

Hilfreichste Antwort - ausgezeichnet vom Fragesteller
von Willibergi, Community-Experte für Mathe & Schule, 25

Du hast h(x) = -0,001x² + 0,4x gegeben.

Um die Frage nach der korrekten Funktion beantworten zu können, muss man sich erst einmal den Scheitelpunkt errechnen.
Dies kann auf mehrere Arten erfolgen:
Quadratische Ergänzung, die vordefinierten Formeln, usw.

Hier habe ich der Einfachheit halber die vordefinierten Formeln angewendet.
Du kannst die Funktionsgleichung aber genauso in die Scheitelpunktform umwandeln und diesen dort ablesen.

=> S(-b/2a | -(4ac - b²)/4a)
=> S(200 | 40)
=> Hochpunkt bei (200 | 40)
=> Ja, der Strahl kann mit h(x) modelliert werden.

Du kannst nun mit dem Satz des Nullprodukts die Nullstellen bestimmen:

"Ein Produkt wird null, wenn mindestens einer der Faktoren null wird."

Also musst du erst einmal ein x ausklammern:

h(x) = x(-0,001x + 0,4)

Jetzt erkennst du:
Wenn du für x einfach 0 einsetzt, wird die Klammer null, weil der Faktor davor null wird. (der Wert der Klammer ist dabei egal, denn 0x = 0)
Wenn du für x aber 400 einsetzt, ist die Funktionsgleichung h(x) = 400(-0,4 + 0,4).
Du siehst, dass der Wert der Klammer, und somit auch das gesamte Produkt null wird.

Also kannst du die Lösungsmenge der Funktion folgendermaßen ausdrücken:

IL = {0; 400}

Das sind also nun die Nullstellen, die Schnittpunkte des Graphen (der Parabel) mit der x-Achse.
Daran kannst du ablesen, dass der Graph genau bei 0 und bei 400 die x-Achse schneidet.
Daran kannst du ableiten, dass der Strahl bei 0m losgeht und bei 400m wieder auf den Boden trifft.

Welche Werte- und Definitionsmenge für die Sachaufgabe sinnvoll ist, spielt keine Rolle, denn sie sind für jede Aufgabe schon im Voraus festgelegt.

D = ℝ (was du für x einsetzen darfst)
W = ]-∞; 40] (was für y rauskommen kann)

Möglicherweise ist aber auch gemeint, was man logischerweise für x einsetzen sollte:
Das ist nämlich das Intervall [0; 400].
Denn negative Werte interessieren uns in diesen Fall nicht - die x-Achse ist der Boden und weiter runter als auf den Boden geht es für den Strahl nicht.
Weiter links als beim Anfang (y=0) kann der Strahl auch nicht gehen, denn er fängt ja bei x=0 an und spritzt nach rechts.

Ich hoffe, ich konnte dir helfen - wenn du noch Fragen hast oder etwas nicht versteht, kommentiere einfach, damit ich dir weiterhelfen kann.

Ich habe aber versucht, die Erklärung so einfach wie möglich zu halten. ;)

LG Willibergi

Kommentar von Nahala2001 ,

Wow. Okay, danke. Hab diese Antwort zwar erst jetzt gesehen, aber durch die Erklärung ist mir das ganze Zeug noch ein wenig klarer! Also, danke. :)

Kommentar von Willibergi ,

Gern geschehen! ;)

LG Willibergi

Expertenantwort
von Ellejolka, Community-Experte für Mathe, 23

Nullstellen berechen; x ausklammern und Nullproduktsatz anwenden

x(-0,001x+0,4)=0

x1=0 und x2=400

dann f(200) ausrechnen

ergibt: 40

also Hochpunkt bei (200;40)

also bestätigt.

D=R und W= (-unendlich; 40)

Antwort
von eraser65, 23

https://www.wolframalpha.com/input/?i=h(x)%3D(-0.001*x%5E2)+%2B+(0.4*x)

Damit du ein Bild deiner Funktion hast.

Kommentar von Nahala2001 ,

Vielen lieben Dank! Hat mich auf jeden Fall schonmal um einiges weitergebracht. 

Antwort
von rumar, 11

Gar nichts zu den konkreten Zahlen- und Funktionswerten.

ABER: Ich habe erhebliche Zweifel, ob man bei einer dermaßen großen "Schussweite" des Wasserstrahls für eine Modellierung den Luftwiderstand einfach vernachläßigen darf, wie man es mit der Annahme einer parabolischen Wurfbahn eben tut. Realistisch scheint mir dies keineswegs.

Kommentar von Willibergi ,

Es soll auch nicht so realistisch sein, sondern nur einen gewissen Realitätsbezug herstellen.

Würde man eine solche Aufgabe realistisch betrachten, wäre die Spritzweite niemals eine Parabel.

LG Willibergi

Kommentar von rumar ,

Eben. Und das sollte jemand, der solche Aufgaben stellt, auch bedenken. Nähme man also anstatt 400m einfach 4m , so hätte man im Prinzip genau dieselbe mathematische Fragestellung und zudem eine Modellierung, die sehr nahe an der Realität läge.

Kommentar von rumar ,

Um allen eine Freude zu bereiten, die hier reingucken und gerne tanzende Wasserparabeln sehen möchten:

https://www.youtube.com/watch?v=L7ALgLjV6Ss

Antwort
von Linmasee, 21

Scheitelpunkt bestimmen würde ich sagen :)

Keine passende Antwort gefunden?

Fragen Sie die Community