Frage von Sarah000103, 40

Beweis Mathematik Wurzelgesetz?

Hey Leute, kann mir jemand helfen. Versuche grade den beweiß für das Wurzelgesetz( sieh Bild) zu finden.

Expertenantwort
von Willy1729, Community-Experte für Mathe & Schule, 8

Hallo,

die n. Wurzel aus a kannst Du auch als a^(1/n) ausdrücken.

Du hast also a^(1/n)*b^(1/n)

1/n ist ein Exponent, den wir für den Moment durch c ersetzen.

Dann hast Du a^c*b^c

a^c ist aber a*a*a*a... (insgesamt hast Du eine Anzahl von c a, die durch eine Multiplikation verbunden sind, das gleiche gilt für b^c.

Du schreibst also c mal a hintereinander, verbindest diese a durch *. Das Ergebnis ist a^c.

Das Gleiche gilt für b^c.

Dann ist a^c*b^c dasselbe wie a*a*a*... (insgesamt c mal)*b*b*b*...(insgesamt c mal)

Da a und b gleich häufig vorkommen, kannst Du sie auch zu Paaren ordnen:

a*b*a*b*a*b*... (insgesamt c mal)

a^c*b^c ist also dasselbe wie (a*b)^c

Da c nur ein Ersatz für 1/n war, ist a^(1/n)*b^(1/n) dasselbe wie (a*b)^(1/n)

Da a^1/n aber nur eine andere Schreibweise für die n. Wurzel aus a und b^(1/n) eine andere Schreibweise für n. Wurzel aus b ist, ist die n. Wurzel aus a mal die n. Wurzel aus b dasselbe wie die n. Wurzel aus (a*b)

Herzliche Grüße,

Willy

Kommentar von Sarah000103 ,

Klasse erklärt

Expertenantwort
von Volens, Community-Experte für Mathe & Schule, 8

Das ist ein ziemlicher schwieriger Beweis für dieses plausible Gesetz
(wie meistens in der Logik), dass ich dir da lieber einen Link gebe:

http://www.mathematrix.de/wurzelgesetze/

Leichter ist es, wenn man die Potenzgesetze als wahr erkannt hat:

                aⁿ * bⁿ = (ab)ⁿ

Sei jetzt  √a = a^(1/n), dann gilt

              √a * √b = a^(1/n) * b^(1/n)
                          = (a b) ^(1/n)
                          =  √ (ab)
                                                      q.e.d. 

Expertenantwort
von Ellejolka, Community-Experte für Mathe, 10

Potenzgesetz

a^(1/n) • b^(1/n) = (a•b)^(1/n)

Antwort
von iokii, 19

Folgt sofort aus (a*b)^2=a^2 * b^2 .

Kommentar von Sarah000103 ,

Ja dass ist mir klar. Aber das ist nicht die Mathematische Fachsprache

Kommentar von iokii ,

Das zu übersetzen ist ja auch dein Job, nicht meiner.

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten