\int_0^1 \left( e^{x^2} \cdot \sin(\pi x) - \frac{1}{(x^2 + 1)^2} \right) dx + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} + \lim_{x \to 0} \frac{\tan(5x)}{x^2} = (Mein alter)