Auch wenn die Frage schon ziemlich alt ist, rein mathematisch gibt es kein Skalarprodukt von unterschiedlich dimensionierten Vektoren. Aus welcher Problemstellung kommt also die Frage?

Aber, prinzipiell gibt es eine Möglichkeit, zwei unterschiedlich dimensionierte Vektoren miteinander zu multiplizieren! Das Dumme ist nur: das Ergebnis ist kein Skalar und kein Vektor, sondern eine Matrix.

Aber der Reihe nach.

Vektoren sind eigentlich nichts anderes als (nx1)-Matritzen.

z.B.: (1 (4
2 * 5
3) 6)

Solche Matritzen lassen sich aber so nicht multiplizieren. Um das Produkt von zwei Matritzen M1 und M2 zu bestimmen, muss M1 eine (axb)-Matrix und M2 (bxc)-Matrix sein (wobei a,b und c auch gleich sein können). z.B.:

M1 (4x2) = ( 1 2 M2 (2x3) = (1 2 3
3 4 4 5 6)
5 6
7 8)

dann ist das Ergebnis eine (4x3) Matrix mit

M12 = (1*1+2*4 1*2+2*5 1*3+2*6
3*1+4*4 3*2+4*5 3*3+4*6
5*1+6*4 5*2+6*5 5*3+6*6
7*1+8*4 7*2+8*5 7*3+8*6)

Um also zwei Vektoren - sprich (nx1)-Matrizen - miteinander zu multiplizieren, muss ich einen davon transponieren.

Das Skalarprodukt ist jetzt eigentlich nichts Anderes als das Matrix-Produkt von einer (1xn)-Matrix mit einer(nx1)-Matrix. Das Ergebnis ist dann eine (1x1)-Matrix. Ich transponiere also den ersten Vektor.

Solange ich nur mit Vektoren der gleichen Dimensionalität operiere, wird der ganze Überbau (wie z.B. ich transponiere den ersten Vektor des Produktes - mache also aus einer (nx1)-Matrix eine (1xn)-Matrix, damit die Multiplikation auch funktioniert) weg gelassen und ich behandele nur die reine Rechnung.

Man könnte natürlich auch statt des ersten Vektors den 2. Vektor transponieren.

Dann multipliziere ich eine (nx1)-Matrix mit einer (1xn)-Matrix. Das Ergebnis ist jetzt eine (nxn)-Matrix.

Und diese Operation lässt sich natürlich auch auf (nx1)*(1xm) anwenden. Und dann bekomme ich eine (nxm)-Matrix.

So weit die mathematisch korrekte Verfahrensweise. Aber anscheinend war ja das Ziel, einen Skalar aus zwei unterschiedlich dimensionierten Vektoren zu bekommen.

Einfach eine 0 dran zu hängen, wie vermutet, ist aber nicht korrekt, denn es stellt sich ja die Frage, welche der Dimensionen fehlt.

Um aus einem 2-dimensionalen Vektor (a b) einen 3-dimensionalen zu machen, gibt es drei Möglichkeiten:
(a b 0) oder (a 0 b) oder (0 a b). Und ja nach Wahl fällt das Ergebnis des Skalarproduktes mit einem 3-dimensionalen Vektor dann anders aus.

Na dann, fröhliches Knobeln. :-)

...zur Antwort

Hallo Emilie

ja, du sollst eine Tabelle erstellen mit 100 Einträgen. Jeweils das Ergebnis des oben (hier leider nicht sichtbar) beschriebenen Zufallsexperimentes. Hier steht zwar etwas von simuliere, aber das ist wahrscheinlich auch im nicht sichtbaren Bereich beschrieben. Und dann sollst du schauen, ob deine berechneten Wahrscheinlichkeiten und die ermittelten Wahrscheinlichkeiten übereinstimmen.

Beispiel: Bei einem Münzwurf gibt es die Möglichkeiten Kopf oder Zahl. Nach der Wahrscheinlichkeitstheorie ist jede Seite gleich wahrscheinlich, es müsste also bei vielen Würfen die Hälfte Kopf und die Hälfte Zahl zeigen. Da es sich aber um eine Wahrscheinlichkeit handelt wirst du nicht abwechseln Kopf und Zahl bekommen, sondern in unregelmäßiger Reihenfolge. Es ist sogar möglich, dass du bei 1000 Würfen immer nur Kopf zu sehen bekommst, aber das ist sehr sehr unwahrscheinlich.

Ich würde bei hundert Würfen also ungefähr 50 mal Kopf und 50 Mal Zahl erwarten, aber auch 40 zu 60 wäre ok. Auch wenn ich mir da langsam Gedanken machen würde, ob die Münze nicht eine Vorzugrichtung hat und woran das vielleicht liegen könnte (so wie bei gezinkten Würfeln, die so gemacht sind, dass die 6 häufiger auftaucht, als alle anderen Zahlen).

Jetzt klar?

...zur Antwort

Hallo,

die Frage ist zwar schon ziemlich alt, aber vielleicht interessiert es den einen oder anderen (wie z.B. mich) immer noch. Hab das mit der Lüsterklemme einfach ausprobiert und es geht. Ist aber ne ziemliche Fummelei, weil die Drähte sehr dünn sind und du aufpassen musst, die Litze nicht zu zerstören, wenn du sie abisolierst. Ich habe auf der Verlängerungsseite ein Kabel für die Unterputzinstallation genommen, da sind die Drähte etwas dicker. Das ging schnell. Aber das, das schon verlegt war, da habe 4 Anläufe gebraucht, bis ich die Drähte sauber so abisoliert hatte, dass ich sie in einer Lüsterklemme anschließen konnte. Würde ich nicht noch einmal machen. Ich hab zwar nicht den Eindruck, dass die Geschwindigkeit von meiner Internetverbindung darunter leidet, aber ich werde mir eine Aufputz LAN Dose besorgen und die Installation noch einmal richtig vornehmen.

...zur Antwort
Helmut Schmidt

Leider einer der wenigen in der SPD, der sowohl wusste, wie der "kleine Mann" denkt, als auch, was man der Industrie zumuten kann.
Die heutige SPD träumt den Zeiten hinterher, in denen der kleine Mann (oder auch Frau) ein Mensch von Tausenden in *einer* Fabrik war. Dass die heutige "natürliche" Klientel alle die sind, die bestenfalls Mindestlohn bekommen und z.B. als Altenpflegende in Betrieben mit weniger als 20 Mitarbeitenden aktiv sind haben die Köpfe der SPD überhaupt nicht auf dem Schirm.

...zur Antwort