Wie berechnet man den Radius eines Zylinders wenn Mantelfläche und Höhe gegeben ist?

... komplette Frage anzeigen

3 Antworten

Das Übliche:
maßgebliche Formeln hinschreiben. (Formel mit dem Ziel als zweite.)
Gucken, was einem in der zweiten Formel fehlt.
Erste Formel umstellen, sodass gesuchter Wert isoliert ist.
Diesen Wert ausrechnen und in die zweite Gleichung einsetzen.

Bemerkung:
wenn es nicht reicht, weitere Gleichungen herausschreiben (ist aber selten)

Manchmal baut man die komplette Ausrechnung der isolierten Größe in die zweite Formel ein, wenn man den Zusammenhang öfter braucht, - aber eben auch nur dann.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Volens
23.04.2016, 14:32

Da habe ich ja nicht ganz das Richtige erklärt.
Du wolltest nur für 1 und 2 den Radius wissen. (Ich hatte gedacht, du wolltest bei gegebenem Mantel das Volumen errechnen.)

Den Radius zu bekommen, ist ziemlich einfach:

  1. M       = 2π r h       | Seiten tauschen
    2π r h = M             | /(2πh)  
           r  = M /(2π h)
  2. V         = π r² h         | Seiten tauschen
    π r² h   = V               | /(2πh)
         r²    = V /(πh)       | √
         r     = √(V / (πh) )

---

im Voraus    mit einem r

(Ich fürchte, das wird derzeit so oft falsch geschrieben, dass der Dudenverlag es als volksverbreitet und damit als gültig anerkennen wird.)

0

Indem du die entsprechenden Formeln nach dem Radius umstellst. Zum Beispiel ist M = 2pi * r * h. Das kannst du leicht nach r auflösen.

Antwort bewerten Vielen Dank für Deine Bewertung

M = Pi * d * h

-> 78 cm = Pi * d * 6cm       /: (6cm) : Pi

4,138 cm = d

-> r = 2,07cm

V = Pi * r^2 * h 

-> 3,5 m^3 = Pi * r^2 * 1,2m          / :( 1,2m) : Pi

0,93 = r^2

r = 0,96m

Antwort bewerten Vielen Dank für Deine Bewertung