Hilfe - Wie geht das Zerfallsgesetz?

... komplette Frage anzeigen

2 Antworten

Wie habt ihr das denn dann in der Schule gelöst, wenn nicht mit dem Logarithmus? Ihr habt doch sicher die eine oder andere Aufgabe gelöst; sonst dürfte das wohl kaum morgen in der Arbeit vorkommen...

N(t)= No * (1/2)^(t/Th) = No/2^(t/Th)         |*2^(t/Th)
N(t) * 2^(t/Th) = No                                |:N(t)
2^(t/Th) = No/N(t)                                     |ln
ln(2^(t/Th)) = ln(No/N(t))                          [ln x^a=a*ln x und ln(a/b)=ln(a)-ln(b)]
t/Th * ln(2) = ln(No)-ln(N(t)                      |:ln(2) * Th
[die rechte Seite wird so nicht nötig sein, da Du No und N(t) kennen wirst, wenn Du nach t oder Th umstellen musst, also in der Zeile davor wirst Du für No/N(t) schon Zahlen einsetzen können]
t=ln(No/N(t))*Th/ln(2)


t/Th * ln(2) = ln(No/N(t))                  |*Th  :ln(No/N(t))
t*ln(2)/ln(No/N(t)) = Th

Und ja, bei Deinem Beispiel musst Du nach Th auflösen, wobei No=10; t=2 und N(t)=0,21 * No = 2,1 sind (wenn 79% zerfallen sind, sind noch 21% übrig, also 100%*0,21=21%)

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von BatmanZer
07.06.2016, 20:44

Vielen Dank für deine Antwort. In der Schule haben wir nur 5 Minuten über den Logarithmus gesprochen und da war ich noch nicht mal in der Schule. Der Lehrer meinte, dass es AUCH okay wäre, wenn wir die Aufgaben mit dem Logarithmus lösen. Diese Aussage impliziert aber, dass wir es normalerweise ohne ihn lösen sollten.

0

Das ist leider heute in vielen Lehrplänen der Fall: die Exponentialfunktion wird gelehrt, die Umkehrfunktion Logarithmus nicht.

Stattdessen erwartet man von den Schülern, dass die Ergebnisse (z.B. Verdopplungszeit und Halbwertszeit) durch iterative Annäherung des Wachstumsfaktors an die Werte 1/2 bzw. 2 ermittelt werden (also durch ausprobieren).

Dies ist sicherlich auch hier der Fall. So kommt man um das Thema "Logarithmus" im Lehrplan herum.

Der Logarithmus findet im G8 Schul-System keinen Platz mehr... ist neben weiteren Themen, die ähnlich behandelt werden, schon bedenklich.

Antwort bewerten Vielen Dank für Deine Bewertung