Warum wirkt die Lorentzkraft wenn sie wirkt?

3 Antworten

Die Lorentzkraft ist ein Beispiel dafür, wie sich in der Erklärung bekannter Effekte bereits bei sehr geringen Geschwindigkeiten grundlegende Unterschiede gegenüber der klassischen Physik ergeben können, denn die Lorentzkraft ist eine Folge der Relativitätstheorie.

Dazu betrachtet man eine einzelne negative elektrische Probeladung in gewissem Abstand neben einem Draht, der insgesamt elektrisch neutral ist, aber aus einem positiv geladenen, starren Grundmaterial (den Atomrümpfen) und vielen negativ geladenen, beweglichen Elektronen besteht. In der Ausgangssituation ruht die Probeladung und im Draht fließt kein Strom. Daher wirkt auf die Probeladung weder eine elektrische noch eine magnetische Kraft. Bewegen sich nun die Probeladung außerhalb und die Elektronen innerhalb des Drahtes mit gleicher Geschwindigkeit längs des Drahtes, fließt im Draht ein Strom. Dieser erzeugt ein Magnetfeld; es übt auf die Probeladung, weil sie sich bewegt, die Lorentzkraft aus, die sie radial zum Draht hinzieht. Soweit die Beschreibung in dem Bezugssystem, in dem das positive Grundmaterial des Drahtes ruht.

Im Bezugssystem, das mit der negativen Ladung mitbewegt wird, wirkt dieselbe Kraft, muss aber ganz anders erklärt werden. Eine Lorentzkraft kann es nicht sein, denn die Geschwindigkeit der Probeladung ist ja Null. Es bewegt sich aber das positiv geladene Grundmaterial des Drahtes und erscheint nun durch die Lorentzkontraktion verkürzt. Es erhält dadurch eine vergrößerte Ladungsdichte, während die im Draht befindlichen Elektronen in diesem Bezugssystem ruhen und daher dieselbe Ladungsdichte haben wie in der Ausgangssituation. Die gesamte Ladungsdichte im Draht zeigt also einen Überschuss an positiver Ladung. Er übt auf die ruhende negative Probeladung eine elektrostatische Kraft aus, die sie radial zum Draht hinzieht. Soweit die Beschreibung im bewegten Bezugssystem.

Beide Beschreibungen führen zu gleichen Voraussagen über die Kraft, die auf die Probeladung wirkt. Ohne Berücksichtigung der Lorentzkontraktion ließe sich dies nicht erklären; in beiden Bezugssystemen bliebe dann der Draht elektrisch neutral. Zwar würde vom Standpunkt des bewegten Bezugssystems aus das bewegte positive Grundmaterial des Drahtes einen Stromfluss bedeuten, der ein Magnetfeld erzeugt, dieses hätte aber auf die ruhende Probeladung keine Wirkung.

Diese Betrachtung zeigt, dass durch Lorentztransformationen Magnetfelder und elektrische Felder teilweise ineinander umgewandelt werden. Das ermöglicht es, die Lorentzkraft auf elektrostatische Anziehung zurückzuführen. Dieser Effekt hat bereits für kleine Geschwindigkeiten messbare Auswirkungen – die mittlere Elektronengeschwindigkeit in Drahtrichtung ist bei Stromfluss typischerweise unter einem Millimeter pro Sekunde, also sehr viel kleiner als Lichtgeschwindigkeit.

Die Lorentzkraft ist mit den maxwellschen Gleichungen eine mathematische Beschreibung elektromagnetischer Effekte. Die Frage nach dem Warum ist da prinzipiell unangebracht. In der Tat kann man die Lorentzkraft aber aus einer anderen Theorie herleiten, nämlich der speziellen Relativitätstheorie.