Frage von nifirm, 42

Mathe Aufgabe 2 Tangenten orthogonal schneiden?

Hey ich komme nicht weiter. Wie sorge ich dafür, dass zwei tangenten sich in einem rechten Winkel schneiden?

Hilfreichste Antwort - ausgezeichnet vom Fragesteller
von Dogukann, 37

Indem du den Richtungsvektor der Tangente auf den anderen Richtungsvektor mit Skalarprodukt=0 ergänzt. Gruß

Kommentar von nifirm ,

Vektoren hatten wir noch nicht :D Trotzdem Danke!

Kommentar von Dogukann ,

Ah sorry, sonst nimmst du die eine Gerade und negativierst die Steigung also bei 3 wäre dies -3 und passt sie dementsprechend an.

Kommentar von mememememe ,

*negaitven Kehrwert. Mit m1, m2 Steigungen also m1 * m2 = 1 als elegantere Gleichung ohne Vorzeichen oder Brüche ;)

Kommentar von mememememe ,

sry natürlich m1 * m2 = -1! Es ist ja eben der negative Kehrwert ;)

Kommentar von nifirm ,

Okay das hab ich mal probiert aber irgendwie hat es nicht geklappt... mein m1 ist 1/2 (x^-1/2) und m2 ist -1/x+1. Jetzt soll ich x so bestimmen, dass die beiden Tangenten sich orthogonal schneiden. Also habe ich m1 und m2 gleichgesetzt (x=1,64) und versucht, eine Steigung zu negativieren aber irgendwie war das dann nicht orthogonal. Hab ich was falsch gemacht? Danke für deine Antwort! LG nifirm

Kommentar von mememememe ,
x = 1/12 (1-23/(181+24 sqrt(78))^(1/3)+(181+24 sqrt(78))^(1/3))

Das ist das, was der Rechner ausgibt für m1 * m2 = -1. Bist du sicher, dass

solve (1/2×1/sqrt(x)) (-1/x+1) = -1  for  x

Deine Aufgabe ist?

Kommentar von Dogukann ,

Tut mir leid, die Bezeichnungen sind mir unbekannt; Also die Steigung ist 0.5 von der einen und von der anderen?

Kommentar von nifirm ,

also m1 ist 0.5 mal (x hoch minus 0.5) und m2 ist (minus 1 durch x) plus 1

Kommentar von Dogukann ,

@memememememe Ja, war etwas erfunden, das gebe ich zu. @nifirm Tut mir leid, ich glaube nicht, dass ich dir weiterhelfen kann, da diese Steigungen für mich Kurven und keine Geraden sind, hmm. Tut mir leid! Vielleicht kannst du mit @mememememes Kommentar was anfangen. Gruß

Kommentar von mememememe ,

Das ist wohl die Tangentensteigung im Punkt x, nehme ich an, also schon die Ableitung seiner Funktion.

Kommentar von Dogukann ,

Wenn ich jene Löse, bekomme ich für x = 0.18 raus bzw. 0.179652043

Kommentar von nifirm ,

Die Tangente tf an den Graphen von f geht durch den Punkt Pf (x0|f (x0)); entsprechend geht die Tangente tg an den Graphen von g durch den Punkt Pg (x0|f (x0)). Bestimmen Sie x0 so, dass sich die beiden Tangenten orthogonal schneiden. f (x)= wurzelx und g (x)=-ln (x)+1. So die Aufgabenstellung. Habe jetzt die Tangenten berechnet mit den Steigungen von oben, wenn das weiterhilft... Danke, dass ihr euch so bemüht! ;) LG

Kommentar von nifirm ,

0.18 sieht sehr gut aus Danke an alle!

Kommentar von Dogukann ,

Bitte gerne, ohne @mememememe s Hilfe wäre es nicht gegangen ;) Gruß

Expertenantwort
von Ellejolka, Community-Experte für Mathe & Mathematik, 24

m1 = - 1/m2

Antwort
von kdreis, 25

Die Ableitung einer Funktion an der Stelle x gibt die Steigung an: f'(x) = tan( alpha).

tan(90°-alpha) = cot( Alpha); tan(90°+ Alpha) = tan(90°-(-Alpha)) = cot(-Alpha)

Keine passende Antwort gefunden?

Fragen Sie die Community