Wie geht man bei dieser Quadratischen Gleichung genau vor, sie soll mit quadratischer Ergänzung gerechnet werden?

...komplette Frage anzeigen

5 Antworten

Das ist die Sache mit der Lücke, die man nachher nicht mehr sieht.

x² - 4x + 20 = 0                    | Gleichung aufteilen
(x² - 4x +      ) -       + 20 = 0 

Erst mal so schreiben, was dann kommt, in die Lücken einfüllen, dann sieht man nachher nicht mehr, wie du's gemacht hast. Jetzt nimmt man den Term mit x, dividiert die Vorzahl durch 2 und quadriert: so geht nämlich die Ergänzung für die 2. Binomische Regel

(x² - 4x +   2² ) -  4   + 20 = 0

Damit die Gleichung gleich bleibt, musst du die addierten 2² gleich wieder als 4 subtrahieren. In der Klammer steht jetzt ein volles Quadrat:

(x - 2)² - 16  =  0
(x - 2)²         =  16

Und daraus kannst du die Wurzeln ziehen.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Volens
22.11.2015, 14:58

x - 2  = ±4
x₁‚₂    = 2 ± 4

---
Wieso versucht ihr beim Antworten, ihm etwas anderes als die quadratische Ergänzung klarzumachen? Das war doch die Frage.

1

Du musst die pq - FormEl anwenden! Also - -4/2 + die Wurzel aus 4/2^2 -20 das ergibt 2 + die Wurzel aus - 16 und das geht nicht also ist die Aufgabe nicht lösbar

Antwort bewerten Vielen Dank für Deine Bewertung

x² -4x +20 = 0 ist quadratisch ergänzt:

x² -4x + 4 -4 +20 = 0 oder

(x-2)² +16 = 0

und da kommt tatsächlich was negatives raus. Darfst du mit imaginären Zahlen rechnen? :D

ansonsten: L = { }

Antwort bewerten Vielen Dank für Deine Bewertung

die Gleichung hat keine Lösung

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von lToml
22.11.2015, 14:48

Soll man seine Rechnung dann einfach unterbrechen oder wie? 

0
Kommentar von Blvck
22.11.2015, 14:49

Wir haben früher immer einen Blitz an die Stelle gemalt. :D Schreib einfach "keine reelle Lösung" oder so

1

x^2 - 4x + 20 = 0

sollst du Mitternachtsformel anwenden?

hmm... du hast recht da kommt unter der wurzel ne minuszahl raus... bist du sicher, dass du die aufgabe richtig abgeschrieben hast?

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von lToml
22.11.2015, 14:46

Ja leider schon :(

0

Was möchtest Du wissen?