Wie berechnet man die durchschnittliche Beschleunigung an einer Funktion?

2 Antworten

Vom Fragesteller als hilfreich ausgezeichnet

Definition :Die Beschleunigung ist die Geschwindigkeitsänderung pro Zeit-     einheit.

Es gilt also für die durchschnittliche Beschleunigung a= (v2 - v1)/t2 - t1)

v1 Anfangsgeschwindigkeit und v2 Endgeschwindigkeit

t1 Zeit bei v1 meistens t1=0

t2 -t1 ist die Zeit,in der sich die Geschwindigkeit ändert.

geht t2-t1 gegen Null,so erhält man den Differentialquotienten.

Dies ist die erste Ableitung der Geschwindigkeit nach der Zeit.

Man erhält somit die "Momentanbeschleunigung"

Ist richtig. Noch klarer wäre es, wenn man s statt f und t statt x (und s' = v) nehmen würde.

Okay vielen dank :D Okay ja eigentlich mache ich das auch aber ich wollte es jetzt einfach halten mit dem f(x), weil ich mich manchmal sehr schnell selber mit den verschiedenen Buchstaben verwirre :D

0
@Miauauau

@Miauauau, gewöhn dir bitte an, Klammern zu setzen, wenn du Brüche in einer Zeile mit / als Bruchstrich schreibst. Sonst gilt auch hier nämlich Multiplikation und Division vor Addition und Subtraktion.

0

Was möchtest Du wissen?