Vierecksdefinition?

9 Antworten

Von der Formulierung allein so ziemlich jedes regelmäßige Viereck.

Die Frage ist halt, wie es genmeint ist. Zwei Paar gleich Großer Winkel kann heißen, dass es 2 mal y Grad und 2 Mal z Grad seien sollen oder dass es halt zwei Paar WInkel (also vier) sind, die eben gleich groß sind (jeder 90 Grad) oder dass das egal ist (weil 2 mal 2 gleichgroße Winkel ja eben alles bedeuten kann).

Wenn alle Winkel gleich groß sein sollen, dann wären das Rechteck und Quadrat

Die Aussage passt zu Parallelogrammen (wenn die gleich großen Winkel einender gegenüberliegen) und zu gleichschenkligen Trapezen (wenn die gleich großen Winkel an der gleichen Seite liegen).

ich sehe es so , dass die Def nicht heißt : g e n a u zwei Paare......daher schlösse (?) ich das Quadrat auch mit ein.

0
@Halbrecht

Naja. Ich habe ja erstens auch nicht gesagt, dass meine Aufzählung abschließend ist (was aber sein sollte, falls ich nichts übersehen habe). Und zweitens ist jedes Quadrat auch immer ein Parallelogramm und auch immer ein gleichschenkliges Trapez. Damit sind ein Quadrat bei meiner Aufzählung dabei.

1
@mihisu

so kann man es auch sehen...........ob es allerdings für die Schule reicht ???

oder gar im Studium ? da wohl schon eher.

0
@Halbrecht

Klar sollte das reichen. Ob für Schule oder Studium ist egal. Schließlich ist es richtig.

Quadrate, Rechtecke, Rauten, etc. zu nennen ist unnötig, da es sich nur um Spezialfälle bereits genannter Vierecke handelt, die also bereits mit meiner Aufzählung abgedeckt worden sind.

1
@Halbrecht

Und ich sehe das auch nicht als genau zwei Paare, sondern als mindestens zwei Paare.

Sonst hätte ich beispielsweise schreiben müssen...
„Parallelogramme bzw. gleichschenkliche Trapeze, die keine Rechtecke sind.“

1
@mihisu

Im Studium dürfte es tatsächlich reichen. In der Schule wäre ich mir da nicht so sicher, da gibt es ein paar ziemlich matte Leerer ...

0

die Definition lautet n i c h t :

Mit genau zwei Paaren

Daher trifft sie auf

Quadrat

Rechteck

Parallelogramm

Raute

gleichschenkeliges Trapez

zu

das Quadrat hat z.B. zwei Paare , die jeweils 90 Grad als Winkel haben.

Parallelogramm.

Mit zusätzlichen Anforderungen auch Raute (alle Seiten gleich lang) und gleichschenkliges Trapez (zwei Seiten parallel).

Parallelogramm, Rechteck, Raute, Quadrat und gewisse Trapeze.

Was möchtest Du wissen?