SChnittpunkte von 2 Gerade

...komplette Frage anzeigen

4 Antworten

Hallo

Die erste Aufgabe hast du richtig gelöst :)

2 Aufgabe:

f(x) = x + 1

g(x) = - 4x + 11

x + 1 = - 4x + 11

Vor dem x steht eigentlich eine 1. Das bedeutet, wenn du + 4 rechnest, muss es heißen:

5x + 1 = 11 / - 1

5x = 10 / : 5

x= 2

g(2) = - 4 * 2 +11 = 3

S ( 2 /3)

  1. Beispiel: stimmt.

  2. Beispiel: Flüchtigkeitsfehler bei "plus4":

    - müsste "+4x" heißen
    - x + 4x = 5x (statt 4x)

    sonst ok.

 Empfehlung:

Mach die Probe - setz den x- und den y-Wert in die beiden Geradengleichungen ein und schau, ob sich jeweils eine wahre Aussage ergibt.

Allgemein:

f(x)= ax + b

g(x)= cx + d.

Die Zahlen a,b,c,d (a!=c), seine Zahlen aus den reellen Zahlen (ggf. muss man die einschränken, aber das würde sich im laufe der Herleitung ergeben)

Geraden sollen sich schneiden, d.h., die Menge

M:={x aus R| f(x)=g(x)} != {}.

Folglich muss,

f(x)=g(x) <=> ax + b = cx + d <=> (a-c)x = d-b <=> x = (d-b)/(a-c).

D.h., für {} != M, gilt, dass M = {(d-b)/(a-c)} sein muss. Nebenbei, M= {} tritt genau dann ein, wenn a = c, aber b !=d, d.h., die Geraden parallel sind, bzw., M = R, genau dann wenn a=c und b=d (Nicht-Definiertheit von 0/0, aber geometrisch klar: Die geraden wären identisch.)

VG, dongodongo.

Die erste Aufgabe hast du richtig gelöst, sehr gut. Bei der zweiten Aufgabe hast du auch die richtigen ansätze, wenn du jedoch +4x rechnest müsste da 5 x + 1 = 11 rauskommen. Rechne damit mal weiter,

Gruß

Was möchtest Du wissen?