Schnittpunkt zweier Parabeln HILFE

2 Antworten

Was willst du mit der mitternachtsformel? Du hast eine Gleichung mit einer Variablen - einfach nur auflösen

Um einen Schnittpunkt zweier Parabeln zu erhalten muss man diese gleichsetzen . Danach erhält man eine Formel . Aus dieser Formel berechnet man die Diskriminante , welche in die mitternachtsformel einsetzt . So erhält man einen Schnittpunkt hat man uns beigebracht

0
@elitexxherozz

Gegeben:

x^2-4x+7 2. x^2-10x+25

     x² - 4x + 7 = x² - 10x + 25
<=>     - 4x + 7 =    - 10x + 25
<=>       6x     =            18
<=>        x     =             3

in eine der beiden Gleichungen eingesetzt:

f(3) = 3² - 4·3 + 7 = 9 - 12 + 7 = 4

Die Mitternachtsformel kannst du nicht anwenden, wenn du kein x² hast. Du müsstest durch Null teilen - und das geht nicht.

Danach erhält man eine Formel . Aus dieser Formel berechnet man die Diskriminante , welche in die mitternachtsformel einsetzt . So erhält man einen Schnittpunkt

Das höre ich auch zum ersten Mal. Der "normale" Weg ist: Gleichsetzen -> nach x auflösen -> für y-Wert in eine Gleichung einsetzen -> fertig

Sollte im Schritt "nach x auflösen" eine quadratische Gleichung stehenbleiben, brauchst du die Mitternachtsformel. Sonst nicht.

2
@elitexxherozz

...welche in die mitternachtsformel einsetzt ...

Die Mitternachstformel ist keine Formel zur Berechnung von Schnittpunkten, sondern zum Lösen von quadratischen Gleichungen.
Wenn durch das Gleichsetzen das x^2 wegfällt, ist es keine quadratische Gleichung, also auch kein Fall für die Mitternachtsformel.

1
@blablub7

Vielen vielen Dank , hab erst jetzt bemerkt dass es sich nach dem Gleichsetzen um eine nicht quadratische Funktion handelt . :)

1

Nach dem Gleichsetzen fällt das x^2 weg

Eben. Darum brauchst du weder Mitternachstformel noch Diskriminante.

x^2-4x+7 = x^2-10x+25 | -x^2

-4x+7 = -10x+25 | +10x

6x + 7 = 25 | -7

6x = 18 | :6

x = 3

Da der Schnittpunkt gefragt ist, solltest du noch dessen y-Koordinate berechnen. Einfach einsetzen.

Was möchtest Du wissen?