Mathe Wurzel Problem

...komplette Frage anzeigen

2 Antworten

1) (xy - y) / x Cx = ((xy - y) √x) / ( (√x) (√x)) = (y √x (x - 1)) / x

2) (2y - y √2) / √(2y) = ((2y - y √2) √(2y)) / (2y) = ((2y √(2y)) - y √(2 *2y)) / (2y)
= ( (√(2y) (2y - y√2)) /(2y)

Wegen dieses Editors braucht man ein paar Klammern mehr für die Eindeutigkeit. Wenn ich mir das Gewusel so angucke, kann ich nur hoffen, dass ich mich nicht vertippt habe.

Deshalb nochmal das allgemeine Prinzip. Um den Nenner rational zu machen, erweiterst du den Bruch immer mit der Wurzel. Beispiel:

y / (5 √(2y)) = (y √(2y)) / 5 √(2y) √(2y) = (y √(2y)) / (10y) = √(2y) / 10

Wenn man Glück hat, kann man am Ende nochmal kürzen wie in diesem Beispiel.
Wenn du die Brüche auf Papier schreibst, sparst du einige Klammern, und alles wird viel deutlicher!

Das Cx, das sich da einmal eingeschlichen hat, hat die ganze Rechnung zerkloppt.

Also nochmal:

1) (xy - y) / x √y = ((xy - y) √y) / (x √y √y ) = (y (x - 1) √y) / (xy) = ((x - 1) √y) / x

Sollte jetzt stimmen.

1

1.) mit wurzel y oben und unten malnehmen

kannst du mir denn sagen was bei der 1 und 2 aufgabe raus kommt ?

0

Was möchtest Du wissen?