Mathe auflösen eckige Klammer + Binomische Formeln

4 Antworten

Hei. Dein Fehler liegt im dritten Schritt. Du hast im Schritt davor [...-4+12a+9a^2] geschrieben. Das ist richtig. Um es zu verdeutlichen schreib ich es mal so: [...-(4+12a+9a^2)]. Du hast zwar das mit dem Vorzeichen umkehren gemacht, jedoch bei der 4 zwei mal. Es müßte heißen [...-4-12a-9a^2]. Sonst ist alles richtig. Nur ein kleiner Schlampigkeitsfehler :)

lg ShD

Woher ich das weiß:Hobby – seit der Schulzeit, ehemals Mathe LK

Für (2a-3)² (2a-3)(2a-3) hin zu schreiben ist überflüssig. Da kannst du gleich die bin. Formel anwenden.

Der Fehler liegt hier [a²-16-4+12a+9a²]

richtig wäre: [a²-16-(4+12a+9a²)] -> vor der runden Klammer steht ein Minus, also kehren sich die Vorzeichen um

=[a²-16-4-12a-9a²]

... ein klein bisschen ist doch etws schon in den ersten beiden Zeilen falsch:

"folgende Gleichung ist zu vereinfachen:

(2a-3)² -[(a-4)(a+4)-(2+3a)² ]

Meine Lösung (...)"

zu vereinfachen ist eine Term, keine Gleichung.


Ok, die Bemerkung war eher für Bürokraten & andere Zwangsneurotiker. Mit mehr Bezug zum Inhaltlichen bekommt das öffentlich zugängliche Rechenprogramm

http://www.wolframalpha.com/

auch 12a² + 29 heraus.

Fehler : +16+9-4 =21 !

4a²-12a+9-a²+16 +4 +12a+9a²

Es ist plus 4

9+16+4

0

Was möchtest Du wissen?