Mathe - Ableitungsfunktionen - brauche Ratschlag

1 Antwort

Vom Fragesteller als hilfreich ausgezeichnet

m=tan 14° also f '(x)=tan 14 und Ableitung von y=x^(3/2) ist 3/2 x^(1/2) (deine funktion war doch x wurzelx = x^(3/2) oder?) und dann weiter mit tan 14 = f(Berührstelle)/waagerechte) du suchst die Nullstelle der Tangente, um zu wissen, wo die Rampe "losgeht".

habe oben Fehler gemacht - nur Wurzel X , eigentlich sollte davor ein Bild von einer Wurzel, das hat gutefrage.net aber nichtz veröffenlicht ;)

 

was ist tan?

0
@Ellejolka

aber ist das nicht 

_____|Y

X

Also Y/X Also hier Y= 14 X=100 also m=0,14?

0
@X94XNickX94X

deins wäre richtig, wenn da 14% stünde, aber da steht 14° und f ' = tan alpha

0
@X94XNickX94X

du hast die Steigung m und einen Punkt, den Berührpunkt und mit y=mx+b mit m und Punkt musst du b berechnen; dann hast du die Rampengleichung und setzt sie =0 und berechnest x. und mit der Nullstelle (N/0) und Berührpunkt berechnest du dann die Länge der Rampe mit Abstandsformel.

0

Könnt ihr mir bei meine Mathe Aufgabe helfen?

Ich habe folgende Aufgabe in Mathe: Die Gerade g1 hat eine Steigung von m=2, die Gerade g2 eine Steigung von m=-2,5 Sie schneiden sich im Punkt S(3I-2).

...zur Frage

Wie sieht die Funktion f aus?

Ich habe bei einer Aufgabe in Mathe nur die Ableitungsfunktion f' gegeben und muss daraus die Funktion f bestimmen. Ich bin gerade überfordert... Kann mir jemand helfen? Ich verzweifle...

...zur Frage

Was genau zeigt eine Ableitungsfunktion an?

Hallo,
Ich bin mal wieder am Mathe lernen und am verzweifeln. Also meine Frage ist: was genau zeigt eine Ableitungsfunktion an ?Ich weiß das wenn ich einen bestimmten Punkt habe und ihn in die Ableitungsfunktion eingebe,dass ich die Steigung an genau diesem Punkt erhalte. Was ist aber wenn ich jetzt keinen Punkt habe also zB. f(x)’= 3x^2-5x . Irgendwie verwirrt mich das alles deshalb wäre es nett wenn ich eine Antwort bekommen würde :)

...zur Frage

Mathe - Ableitungsfunktion Tiefpunkt auf X-Achse?

Hallo Leute!

Wir nehmen in Mathe gerade das Thema "Ableitungsfunktionen" durch. Nun haben wir das Schaubild einer Ableitungsfunktion bekommen und müssen die normale Funktion dazu beschreiben. Stellt euch vor, das Bild wäre die Ableitungsfunktion.

Die Ableitungsfunktion hat einen Tiefpunkt (also hat die normale Funktion dort einen Wendepunkt), und der liegt auf der x-Achse (also müsste die normale Funktion dort einen Extrempunkt haben). Das kann die Funktion aber nicht beides gleichzeitig haben o.o

Kann mir jemand erklären, was an dieser Stelle passiert und wo mein Denkfehler liegt?

Danke schonmal im Voraus, LG K8thii ^^

...zur Frage

Bedeutung einer Ableitungsfunktion im Sachzusammenhang?

Ich schreibe Morgen eine mathe Klausur und wiederhole Grade die Ableitungsfunktion. An sich kann ich alles super ableiten, nur den Sachzusammenhang einer Ablehnung verstehe ich nicht.

Beispiel: Die Strecke m, die ein 200-m-Läufer nach t Sekunden zurückgelegt hat, worden näherungsweise durch die Funktion f mit f(t)= -0,02t^3 + 0,85t^2 + t beschrieben. Die Ableitungsfunktion ist dann f'(t)= -0,06t^2 +1,7t + 1 ... Was bedeutet das im Kontext?

Oder : f(20)=200 bedeutet in dem Fall, dass der Läufer nach 20 sek 200 m zurückgelegt hat. Und f'(20)=11 ... Was bedeutet das im Kontext??

...zur Frage

Wieso ist die eine Aufgabe wahr, die Andere falsch?

Also ich habe folgendes Problem: Wir haben in Mathe Aufgaben gemacht, mit wahr und falsch und ich habe nur die Lösung, aber nicht die Begründung:

Für eine Funktion f, die auf dem Intervall I zweimal abgeleitet werden kann, gilt:

  1. Ist f(x)<0 für x<x0 und f(x)>0 für x>x0, so liegt bei x0 ein lokales Minimum vor. Hier habe ich falsch
  2. Ist f´(x)<0 für x<x0 und f´(x)>0 für x>x0, so liegt bei x0 ein lokales Minimum vor.

Bezieht sich das x0 dann auf die Originalfunktion und wie komme ich darauf?

Danke im Voraus!

...zur Frage

Was möchtest Du wissen?