Katheten im rechtwinkeligen Dreieck berechnen?

Grafik - (Dreieck, Katheter)

3 Antworten

Hallo,

dieses Dreieck kann es gar nicht geben.

Wenn es einen rechten Winkel haben soll, der der Seite c gegenüberliegt, also bei Punkt C liegt, und die Höhe auf c 15 m hoch sein soll wegen 150 m²=15*20/2, funktioniert das nicht.

Wenn Du um die Seite c einen Halbkreis schlägst, dann hat dieser einen Radius von 10 m. Das ist das Maximum, das die Höhe erreichen kann, wenn das Dreieck rechtwinklig sein soll, denn der der Seite c gegenüberliegende Punkt C, der der Scheitel des rechten Winkels ist, muß auf diesem Halbkreis liegen. Eine Höhe von 15 m kommt also nicht in Betracht.

Herzliche Grüße,

Willy

Demnach kann entweder die Fläche oder die Hypotenuse nicht stimmen?

Ok danke... auf die 10 Meter war ich über einen anderen Weg schon einmal gekommen, doch die Probe über den Höhensatz passte dann wieder nicht.

Ich frage morgen meine Übungsleiterin, von ihr kommt die Aufgabe...

Danke

1
@CassieR

Hallo,

zumindest kannst Du Eindruck schinden, wenn Du ihr zeigst, daß Du gemerkt hast, daß diese Aufgabe nicht lösbar ist und ihr das mit dem Thaleskreis erzählst.

0

Nimm den kathetensatz a2 = c x q
Und den pythagoras für das Teildreieck. a2 = q2 + h2
Setze den kathetensatz in den pythagoras ein. So hast du nur q als unbekannte. Des Rest kriegst du auch so hin....

Den Ansatz hatte ich auch schon... doch bei der pq-Formel steht dann ein negativer Wert unter der Wurzel...

Glaube ich seh den Wald vor lauter Bäumen nicht mehr.

1

kathetensatz hilft weiter

Dazu fehlt eine Seite. Ich habe weder p noch q und keine Seite.

0
@CassieR

okay, den höhensatz und p+q=c als formelsystem, damit p und q ausrechnen.........ich konnte nicht sehen,wo´s bei dir hängt

0

Was möchtest Du wissen?