Hilfe zur linearen Algbra?

... komplette Frage anzeigen

5 Antworten

Man darf in solche Gesetze nicht mehr hineingeheimnissen, als drinsteckt.
Zunächst ist die Distributivität eine Forderung an eine Zahlenmenge, ob nach den Regeln dieser Menge bezüglich zweier Verknüpfungen eine Verteilung in irgendeiner definierten Form auftritt, z.B. in der der Form (A+B)•C = A•C+B•C. (Der • ist eine Verknüpfung, die nicht unbedingt die bekannte Multiplikation mit Zahlen sein muss.)

Bei dir geht es vermutlich um Vektoren. Man muss die Verknüpfungen nach den Bildungsdefinitionen herstellen und die linke und rechte Seite im Ergebnis vergleichen. Sind sie gleich, gilt das Distributivitätsgesetz.
Das ist sowohl beim Skalar- wie beim Vektorprodukt der Fall.

Wären die ausgerechneten Terme nicht gleich, würde das Gesetz eben nicht gelten. Das kommt allerdings nicht oft vor, weil bei Ringen (Mengen mit 2 definierten Verknüpfungen) meist ausdrücklich gefordert wird, dass sie distributuv sein sollen.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Lara45566
25.11.2015, 10:10

Jetzt hast du mich wieder verwirrt .. Könntest du mir den Anfang vorgeben ?

1
Kommentar von chakajg
25.11.2015, 10:27

Beispiel:

[(1/2/3)+(3/4/5)]*2

[(4/6/8)]*2

(8/12/16)

[(1/2/3)+(3/4/5)]*2

(1/2/3)*2+(3/4/5)*2

(2/4/6)+(6/8/10)

(8/12/16)

1

Das ist das eine der beiden Distributivgesetze. Man kann es durch eine Logiktabelle zeigen, dabei ist die Addition eine UND- Verknüpfung und die Multiplikation eine ODER- Verknüpfung.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Lara45566
25.11.2015, 09:20

Ah ja ich verstehe was du meinst, nur heißt die Tabelle bei und wahrheitstafel :D

0

Leidre bleibt es bislang immer noch unklar, was für "Gebilde" A, B und C sein sollen.
Offenbar reden wir nicht über reelle Zahlen. Du schreibst in einem Kommentar, es geht um Matrizen. Sind Zeilen- und Spaltenzahl vorgegeben (z.B. 3x3-Matrizen) oder sollst Du das für beliebige Matrizen beweisen?

Bevor das nicht richtig klar ist, ist es für alle Antwortenden sehr schwierig, die Antwort auch so zu geben, dass sie Dir weiterhilft.

Antwort bewerten Vielen Dank für Deine Bewertung

Seien A,B n x m Matritzen und C eine m x n Matrix

D = ( A + B ) • C

Damit ist D_ik = ( a_i1 + b_i1 ) c_1k + ( a_i2 + b_i2 ) c_2k + ... + ( a_im + b_im ) c_mk

Und hier kannst die jetzt die Klammern auflösen und die Terme schön umsortieren.

Antwort bewerten Vielen Dank für Deine Bewertung

Ein und Ausklammern, ist schon richtig was du sagst.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Lara45566
25.11.2015, 09:17

Ich kann da ja jetzt schlecht schreiben, dass es einfach so ist, weil man ja wenn man die Klammer auflöst, alles was in der Klammer ist mal C Rechnet. Kann es sein, dass ich dort so wie beim distributivgesetz verfahren muss ?

0
Kommentar von Lara45566
25.11.2015, 09:43

Könntest du mir denn Anfang einmal vorgeben? Ich hab vergessen zu erwähnen, dass es sich um
Matrizen handelt, somit kann ich ja keine wahrheitstafel anwenden oder ?

0

Was möchtest Du wissen?