Bedingungen für einen berührpunkt?

...komplette Frage anzeigen

3 Antworten

Berührpunkt an der Stelle x bedeutet, beide Funktionen haben an dieser Stelle den gleichen y-Wert, also f(x)=g(x) und die Steigung ist die Gleiche, sonst wäre es ein Schnittpunkt, also f'(x)=g'(x).

Die Krümmung muss nicht gleich sein (wie Dein Lehrer meint): z. B. f(x)=x²; g(x)=-x²; beide haben P(0|0) und f'(0)=g'(0)=0, aber f''(0)=2 und g''(0)=-2

Für einen Berührpunkt sind drei Bedingungen wichtig:

Die x-Werte sind identisch.
f(x) = g(x)
f '(x) = g'(x)

Das gilt auch, wenn eine Funktion eine Gerade ist. Denn wenn man diese ableitet, ist die 1. Ableitung gleich m.

Wenn der Berührpunkt nicht gegeben ist, muss man ihn auf irgendeine Weise errechnen, z.B. durch Gleichsetzung der beteiligten Funktionen.

Wenn f und g sich im Punkt (x|y) berühren, dann haben sie dort den gleichen Funktionswert, also f(x)=g(x)=y, genauso wie bei einem Schnittpunkt. Zusätzlich dazu haben sie in diesem Punkt aber auch die gleiche Steigung: f'(x)=g'(x).

Zu beachten ist aber, dass auch ein Schnittpunkt möglich ist, bei dem beide von dir genannten Bedingungen zutreffen. Zusätzlich sollte geprüft werden, ob f(x) oder g(x) dort einen Wendepunkt haben. (Oder habe ich einen Denkfehler?)

0
@Comment0815

Ich denke, du hast einen Denkfehler. :) Zwei Parabeln können sich im Scheitel berühren, der nicht ihr Wendepunkt ist.

0

Danke :) und gebe ich dann für x die jeweilige x Koordinate nur ein, also zb p(2/3), dann f(2)=g(2) ?

Mein Lehrer meinte auch noch irgendwas von "gleiche Krümmung", heißt dass dann f''(x)=g"(x) ?

0
@xNalaaa

Genau! Gleiche Krümmung ist f''(x)=g"(x), richtig, aber es ist keine Bedingung, die aus "f und g haben einen Berührpunkt bei x" folgt.

1

Was möchtest Du wissen?