Bedingte wahrscheinlichkeiten in der Stochastik/Mathematik?

... komplette Frage anzeigen

2 Antworten

Die Wahrscheinlichkeit, das nächste mal Kopf zu werfen, ist unabhängig von dem, was du zuvor schon geworfen hast, nämlich immer 1/2.

Besser ist vielleicht ein anderes Beispiel: du hast eine Urne mit 5 weißen und 5 schwarzen Kugeln. Gezogene Kugeln werden nicht in die Urne zurückgelegt.

Die Wahrscheinlichkeit, dass du eine weiße Kugel ziehst, ist zunächst 50%.

Die Wahrscheinlichkeit, dass du als zweites eine weiße Kugel ziehst unter der Bedingung, dass die erste eine schwarze war, ist dann 5/9.

Die Wahrscheinlichkeit, dass du als zweites eine weiße Kugel ziehst unter der Bedingung, dass die erste eine weiße war, ist dann 4/9.

Ob die bedingte Wahrscheinlichkeit einen unterschied macht, hängt also von der Aufgabe ab.

Antwort bewerten Vielen Dank für Deine Bewertung

Hallo,

die bedingte Wahrscheinlichkeit für ein Ereignis setzt voraus, daß ein anderes Ereignis bereits eingetreten ist.

Die Wahrscheinlichkeit dafür, daß Du Kopf wirfst, wenn Du beim ersten Wurf bereits Kopf geworfen hattest, ist 0,5, denn es geht jetzt nur noch darum, ob diesmal Kopf oder Zahl fällt. Das Ereignis: Kopf beim ersten Wurf' ist ja bereits eingetreten.

So ist die Formel P(B|A)=[P(A∩B)]/P(A) zu verstehen.

Dabei ist P(A∩B)=0,5²=0,25 und P(A)=0,5

0,25/0,5=25/50=0,5

Herzliche Grüße,

Willy

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?