Frage von 1900minga, 77

Wie kann man die Raumdiagonale eines Quaders o.ä. berechnen?

Ich weiß wie es bei einem Würfel geht, aber bei einem Quader stell ich es mir schon deutlich schwerer vor.

Wie lautet die Formel?

Expertenantwort
von Volens, Community-Experte für Gleichungen, Mathe, Mathematik, ..., 45

Es ist nicht wesentlich schwieriger als beim Würfel. Die Grundseite hat ihren Pythagoras:  a² + b² = d²   wenn wir d mal als Diagonale nehmen.

Jetzt darf man gar nicht erst d ausrechnen (also eine Wurzel ziehen), denn man kann sofort einen zweiten Pythagoras hochziehen. Die Bodendiagonale d bildet mit der dritten Kante c auch einen Pythagoras für die Raumdiagonale D.
Gleich in Quadraten       D² = d² + c²
                         oder       D² = a² + b² + c²

Daraus kannst du dann für D die Wurzel ziehen:

                                       D = √ (a² + b² + c²)

Das ist doch eine wirklich schöne Formel.

In anderen Postings gehst du mit der Kenntnis sehr leichtferig um. Du solltest dir den Rechengang schon merken, wenn du mal die Volumina der quadratischen Säule oder anderer gerader Körper brauchst.

Antwort
von Ranzino, 52

Auch beim Quader ist die Diagogale die Hypothenuse eines rechtwinkligen Dreiecks. Gilt sowohl für die Diagonale des Raums als auch einer einzelnen Seite.

Expertenantwort
von Ellejolka, Community-Experte für Mathe & Mathematik, 30

e = wurzel(a² + b² + c²)

Antwort
von BurkeUndCo, 15

Nach Phytagoras, denn Du hast hier ja lauter rechtwinklige Dreieckle.

Also Wuirzel aus (a² + b² + c²)

Keine passende Antwort gefunden?

Fragen Sie die Community