Frage von HamburgerDeern9, 56

Wie ist der Radius des Halbkreises zu wählen, damit das Tunnelvolumen möglichst groß ist?

Ich habe folgende Aufgabe: Der Querschnitt eines 25 m langen Tunnels besteht aus einem Rechteck mit aufgesetztem Halbkreis. Der Umfang der Querschnittsfläche beträgt 18 m. Hat jemand einen Lösungsvorschlag?

Antwort
von Ahzmandius, 28

1)Formuliere die Zielfunktion (also die Funktion, die maximiert werden soll)

Tipp1:Volumen des Tunnels

2)Formuliere die Nebenbedingung, unter der maximiert werden soll

Tipp2:Umfang des Tunnels

3)Löse nach einer Variablen in der Neben-Fkt. auf und setze sie in die Zielfunktion ein

Tipp3:Am besten so, dass nach dem Einsetzen in die Zielfunktion nur noch r als Variable in der Zielfunktion auftaucht.

4)Leite die so entstandene Funktion nach der Variable ab und setze es gleich null.


Wenn du alles so gemacht hast, musst du nur noch nach r auflösen und hast deinen Maximalen Radius.


Antwort
von Kaenguruh, 22

Da die Länge fix ist, hängt das Volumen nur noch von der Querschnittsfläche ab und nur diese ist zu maximieren. Diese besteht aus einem Halbkreis mit dem Durchmesser d und einem Rechteck mit der Länge d und der Höhe h. Der Umfang des Halbkreises ist d/2 π, der des Rechtecks d + 2h. Der Gesamtumfang also  U =  d/2π + d +2 h = 1,5 π d + 2h = 18. Die Fläche des Halbkreises  0,5  (d/2)^2 π = 0,125 d^2 π. Die Fläche des Rechtecks ist h * d. Die Gesamtfläche also 0,125 d^2π + h* d. Die Umfangsgleichung nach h auflösen ergibt h = 9- 0,75 π d. Das h in der Fläche ersetzen ergibt F= 0,125 π d^2 + (9-0,75 π d) d = 0,125π d^2 - 0,75π d^2 +9 d = - 0,625π d^2 + 9d. Von dieser Parabel den Scheitel finden oder, wenn Du schon differenzieren  kannst, die erste Ableitung bilden und 0 setzen. X-Koordinate des Scheitels ist -b/(2a). Also -9/(-2 * 0,625π) = 4,6 m. Das ist der Durchmesser. Der Radius also 2,3 m. Ich hoffe, ich habe mich nicht verrechnet, aber der Ansatz stimmt.

Kommentar von Ahzmandius ,

Eigentlich müsste der Umfang des Vierecks doch 2d+2h sein, oder?

Kommentar von Kaenguruh ,

Die obere Längsseite zählt ja nicht, weil die trennt nur den Halbkreis vom Rechteck und trägt nichts zum Umfang des Tunneleingangs bei. Mach mal eine Skizze, dann siehst Du das.

Antwort
von Ahzmandius, 34

Habe ich das richtig verstanden, die Querschnittsfläche ist ein Rechteck mit einem Halbkreis darin?

Kommentar von HamburgerDeern9 ,

Nein, direkt auf dem Rechteck befindet sich der Halbkreis. 

Kommentar von Ahzmandius ,

Ah, ok

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten