Frage von MyTimeYourDeath, 58

Wie hoch ist die Wahrscheinlichkeit nach 3 Würfen mit einem Würfel die Zahl 6 mindestens einmal anzutreffen?

Frage steht oben, wäre mir über eine Antwort sehr dankbar

Expertenantwort
von Willibergi, Community-Experte für Mathe, Mathematik, Schule, 18

Die Wahrscheinlichkeit, nach drei Würfen mindestens einmal die 6 gewürfelt zu haben, ist die Gegenwahrscheinlichkeit dazu, nach drei Würfen keine 6 gewürfelt zu haben.

Die Wahrscheinlichkeit, bei einem Wurf keine 6 zu würfeln, liegt bei 5/6, da es fünf Zahlen auf dem Würfel gibt, die du würfeln kannst.

Die Wahrscheinlichkeit, dreimal keine 6 zu würfeln, liegt bei (5/6)³, da die Einzelwahrscheinlichkeiten multipliziert werden.

Die Gegenwahrscheinlichkeit ist 1 - (5/6)³ ≈ 0,4213 = 42,13%.

Also liegt die Wahrscheinlichkeit bei etwa 42,13%. ;)

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach.

LG Willibergi

Antwort
von Rubezahl2000, 9

3 Würfe => insgesamt sind 6•6•6 = 216 verschiedene Konstellationen möglich.

Davon sind 5•5•5 = 125 Konstellationen OHNE, dass eine 6 dabei ist.
=> 216 - 125 = 91 Konstellationen mit mindestens EINER 6 dabei.

Wahrscheinlichkeit: 91/216 = 0,4213 = 42,13%

Antwort
von Camelbak, 33

ca 42% bzw 0.421296. 

Taschenrechner " BinomCdf(3,1/6,1,3) "

Antwort
von Pudelwohl3, 25

Das war wohl ein Irrtum meinerseits ...

Kommentar von Pferdemetzgerin ,

nein

Kommentar von MyTimeYourDeath ,

das dachte ich auch, mein freund sagt aber das ich falsch liege und die 2 anderen hier in den kommentaren auch

Kommentar von Pudelwohl3 ,

Ich hab grad nochmal nachgeschaut:

     1 - (5/6 · 5/6 · 5/6) = 0,42

Keine passende Antwort gefunden?

Fragen Sie die Community