Frage von ironie21, 26

Wie gebe ich diese Definitionsmenge an?

Also ich habe diese Funktion f(x)= Wurzel aus (x^2 - 4)

Eigentlich kann man ja jetzt alle reelle Zahlen einsetzen, die aber größer gleich 2 bzw. -2 müssen, weil ost wäre das unter der Wurzel ja negativ.

Wie schreibe ich das jetzt mit dem ''außer''?

Muss ich dann sagen größer gleich der Betrag von 2 oder wie?

Ich hoffe, ihr könnt mir helfen!

Expertenantwort
von Willibergi, Community-Experte für Mathe & Mathematik, 16

Du hast richtig erkannt, dass du alle Zahlen einsetzen darfst, deren Betrag größer/gleich 2 ist.

Mathematisch ausgedrückt sieht das so aus:

ID = {x ∈ ℝ | |x| ≥ 2}

Möglich wäre auch:

ID = {x ∈ ℝ | x ≤ -2 ∨ x ≥ 2}

Ersteres ist aber (für faule Mathematiker ^^) eher empfehlenswert. :)

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach. 

LG Willibergi

PS: ID steht für die Definitionsmenge, das ist ein D mit Doppelstrich.

Antwort
von Wechselfreund, 2

Hängt von der im Unterricht eingeführten Schreibweise ab!

(Eigentlich) kann man  alle reelle Zahlen einsetzen, die (aber) größer gleich 2 bzw. kleinergleich -2 sind.

fände ich in Ordnung.

Antwort
von Panteon00, 6

Das "außer" ist ein Backslash ('\')

Antwort
von lersehu1, 18

Df = {xeR | |x|>=2}

Kommentar von Wechselfreund ,

Bin mir nicht sicher, ob das als "End"fassung akzeptiert wird. Dann könnte man ja gleich |x²-4| größergleich 0 schreiben....

Keine passende Antwort gefunden?

Fragen Sie die Community