Frage von grtgrt, 107

Wie definiert sich das Higgs-Feld denn nun eigentlich genau?

Hintergrund der Frage:

  • Rüdiger Vaas schreibt: Da das Higgs-Boson keinen Spin hat, kann das Higgsfeld nur ein Skalarfeld sein (also kein Vektorfeld).

Wie vertragen sich diese beiden Aussagen miteinander?

Und ist es dann wirklich richtig, dass die (für die schwache Wechselwirkung zuständigen) W und Z-Bosonen ihre Masse nicht über das Higgsteilchen bekommen?

Hilfreichste Antwort - ausgezeichnet vom Fragesteller
von RuedigerVaas, 69

Die beiden zitierten Aussagen sind nicht im Widerspruch (und der Kommentar von indiachinacook, ist korrekt; wobei man noch zwischen den Higgs-Zuständen vor und nach der elektroschwachen Symmentriebrechung unterscheiden muss).

Das Higgs-Feld ist kein Vektorfeld und das Higgs-Boson (ein temporärer Anregungszustand oder Quant des Felds) hat Spin 0. Das Higgs-Feld (NICHT das Boson!) erzeugt durch seine Wechselwirkung mit den W- und Z-Bosonen deren träge (NICHT gravitative) Masse.

Kommentar von grtgrt ,

Vielen Dank für Ihre Antwort.

  • Wie aber ist das nun mit der Masse der Fermionen: Wird auch sie durch Interaktion mit dem Feld erzeugt (oder doch durch Interaktion mit dem Higgs-Boson)? Wenn letzteres: Überlebt das Boson so eine Interaktion?
  • Und warum betonen Sie so stark, dass die NICHT gravitative (die träge) Masse der W- und Z-Bosonen durch den Higgs-Mechanismus erzeugt wird. Man liest doch überall, dass die träge und die schwere Masse stets gleich groß sind.  
Kommentar von RuedigerVaas ,

Gern geschehen. Gute Fragen.

Ja, die Fermionen bekommen auch die träge Masse durch das Higgs-Feld. Zumindest die Quarks, Elektronen, Myonen, Tauonen. Bei den Neutrinos (die auch Fermionen sind), ist es unklar. Es gibt Modelle mit und solche ohne Higgs-Mechanismus, es ist nicht entschieden.

Das Higgs-Boson wechselwirkt mit Fermionen und Vektorbosonen, aber erzeugt nicht deren Masse.

Ich hoffe, das hilft weiter. 

Kommentar von OlliBjoern ,

Danke. Also ich verstehe nun die Sache mit dem Feld besser als die Sache mit dem Teilchen. Ich kann mir gut vorstellen, dass es ein Feld gibt, dass manchen Teilchen (sagen wir mal W- und W+ Bosonen) Masse verleiht durch Wechselwirkung.

Was ich nun nicht gut verstehe, ist, dass man mit viel Energie (im Teilchenbeschleuniger) auf dieses Feld "draufbrutzelt", und dann (wie?) ein Teilchen herausbekommen kann.

Ich meine folgende (vermutlich unpassende) Analogie: ich habe ein Magnetfeld um einen Magneten herum. Ich kann nun nicht per Energiezufuhr aus diesem Feld ein "Magnetfeld-Teilchen" generieren.

Ich kann mir schon vorstellen, dass ein Teilchen ein Feld generieren kann (so wie ein Magnet das auch kann). Aber aus einem Feld, in dem kein Teilchen drin ist, ein Teilchen heraus zu kitzeln, ist für meine Intuition etwas schwierig.

Oder anders gefragt: nehmen wir mal an, ich hätte nun ein H-Boson erzeugt. Wäre dann (in diesem kleinen Volumenelement, für das das Boson "zuständig" war) das Feld zusammengebrochen/erloschen? 

Antwort
von Reggid, 46

die frage ist ja schon ein paar tage alt, aber vl. schaut noch mal wer. die anderen antworten waren ja außerdem eh alle korrekt.

vl. noch ein bisschen genauer dazu wie viele freiheitsgrade das higgs-feld jetzt hat:

genauso wie das (linkshändige) leptonen-feld zwei komponenten hat (genannt elektron-neutrino und elektron in der ersten generation, allgemein immer ein neutrino und ein geladenes lepton) und das (linkshändige) quark-feld zwei komponenten hat (genannt up-quark und down-quark in der ersten generation, allgemein ein up-type und ein down-type quark), so hat auch das higgs-feld zwei komponenten. jede dieser komponenten ist für sich ein skalares feld (spin 0), allerdings ein komplexes, und so wie man eine komplexe zahl in einen real und einen imaginär teil zerlegen kann, so kann man ein komplexes skalares feld als summe zweier reeller skalarer felder darstellen. insgesamt gibt das also 2x2=4 freiheitsgrade (denn ein reelles skalares feld hat nur einen einzigen freiheitsgrad).

vor der symmetriebrechung haben wir vier masselose eichbosonen. masselose spin-1 teilchen haben je 2 freiheitsgrade (so haben z.B. elektromagnetische wellen (=masselose photonen) nur 2 transversale polarisationsfreiheitsgrade, aber keinen longitudinalen.) also insgesamt 4x2=8 freiheitsgrade.
in summe also 4+8=12 freiheitsgrade. wenn wir nichts falsch machen müssen wir nach der massenerzeugung durch die symmetriebrechung wieder 12 freiheitsgrade finden.

durch die spontane symmetriebrechung erhält eines der 4 reellen higgs-felder einen vakuumerwartungswert. der konstante wert niedrigster energie (also im vakuum) um den herum es anregungen geben kann (die wir als teilchen interpretieren) ist dann also nicht mehr 0, sondern hat eben einen wert v>0 (in unserem fall ist v~250 GeV).

diese konstante anregung eines der higgs-felder ist das was die massen generiert (beschrieben wie das funktioniert habe ich das z.B. hier: http://www.drillingsraum.de/room-forum/showthread.php?tid=4312&pid=29921#pid...). dynamische anregungen um diesen konstanten wert herum ist dass was wir als das "higgs-boson" kennen. da es ein reelles skalares feld ist, ist das higgs also ein skalares, ungeladenes spin-0 teilchen (=1 freiheitsgrad).

die 4 ursprünglich masselosen eichbosonen mischen zu 3 massiven (W und Z) und einem masselosen (photon). der interessante punkt ist, dass man aus der quantenmechanik weiß dass ein massives spin-1 teilchen 3 freiheitsgrade hat. nicht nur 2 transversale, sondern auch einen longitudinalen. nun kommen die auf einmal her wenn sie vorher in den masselosen eichbosonen nicht da waren? die antwort ist z.B. das physikalische, massive Z boson nicht nur eine mischung aus zwei der ursprünglich masselosen eichbosonen ist, sondern auch noch zusätzlich aus einem der higgs-felder (eines jener ohne vakuumserwartungswert) besteht. dieses erzeugt nämlich genau den fehlenden longitudinalen freiheitsgrad.

in summe haben wir also ein masseloses photon (2 freiheitsgrade) + 3 massive eichbosonen (3x3=9 freiheitsgrade) plus ein physikalisches higgs-boson (1 freiheitsgrad) = 12 freiheitsgrade, genauso viele wie vor der symmetriebrechung, nur anders auf die physikalisch beobachtbaren teilchen verteilt.

aber das volle higgs-feld muss eben wirklich aus 2 komplexen skalaren feldern (bzw. 4 reellen skalaren feldern) bestehen, sonst funktioniert es nicht und die longitudinalen polaristaionsfreheitsgrade der W und Z bosonen würden fehlen. und das wiederum würde ab einer energie von ca. 1 TeV zu komplett widersprüchlichen vorhersagen führen (z.B. wahrscheinlichkeiten größer als 1), was der grund ist, warum der LHC so designed wurde dass dieser energiebereich getestet werden muss. weil man wusste, dass das standardmodell ohne higgs-mechanismus hier einfach nicht mehr gelten kann wenn es zu logischen widersprüchen führt. daher wusste man dass man in diesem bereich entweder das higgs findet, oder aber irgendetwas ganz anderes neues auftauchen muss. niemand konnte sich also sicher sein dass am LHC das higgs gefunden werden würde (ob es das wirklich gibt konnte man vorher nicht wissen), aber man konnte sicher sein dass man irgendwas finden würde. und das war die große stärke des LHC projekts: es konnte (in diesem punkt) gar nicht fehlschlagen.

Kommentar von indiachinacook ,

würde ab einer energie von ca. 1 TeV zu komplett widersprüchlichen vorhersagen führen (z.B. wahrscheinlichkeiten größer als 1)

Ich interpretiere das so, daß die Theorie dann nicht mehr unitär ist. Kannst Du mir grob erklären, wie das mathematisch passiert? Ich kann zwar Quantenmechanik, aber keine QFT, und in der QM ist ja immer alles per Konstruktion unitär (wenn man nicht ganz komische Sachen macht).

Kommentar von Reggid ,

hier ist z.B. beschrieben was ohne higgs-mechanismus das problem wäre: http://www.quantumdiaries.org/2012/02/14/why-do-we-expect-a-higgs-boson-part-ii-...

Kommentar von Astroknoedel ,

Ich hätte eine Frage:

Du hast geschrieben:

"Genauso, wie man eine komplexe Zahl in einen reellen und einen Imaginärteil zerlegen kann, so kann man ein komplexes skalares Feld als Summe zweier reeller Felder darstellen"

Müsste es dann aber nicht eben auch die Summe eines reellen und imaginären Feldes sein ? 

Wo liegt der Denkfehler ?

Kommentar von Reggid ,

um eine komplexe zahl eindeutig zu beschreiben benötigst du zwei reelle zahlen. einen realteil und einen imaginärteil. also kannst du eine komplexe zahl z zerlegen in zwei reelle zahlen a und b als

z= a + i * b

genauso kann man ein komplexes feld phi schreiben als zwei reelle felder phi1 und phi2 als

phi = phi1 + i * phi2

Antwort
von indiachinacook, 68

MartinBs Artikel zum Higgs-Boson sind ausgezeichnet, die solltest Du lesen. Das traue ich mich zu sagen, auch wenn ich sie nur ungefähr verstanden habe.

Auch wenn ich dabei kein Experte bin: Als Skalarfeld hat das Higgs-Feld keine Spinor-Kom­ponenten. Es ist aber trotzdem mehr­komponentig, weil es ja vier elektro­schwache Austauschteilchen gibt (γ, W⁺, W⁻, Z⁰). Drei Higgs-Kom­ponenten mischen mit den zugehórigen Aus­tausch­teilchen (deshalb haben W⁺, W⁻ und Z⁰ Masse) und sind daher nicht mehr als unabhängige Objekte zu zehen; die vierte Komponente ist frei und liefert das vor ein paar Jahren real beobachtete Higgs-Teilchen.

Wenn ich mich irre, wird mich hoffentlich jemand darauf hinweisen.

Antwort
von Astroknoedel, 22

Hallo grtgrt,

Wo liegt denn deiner Meinung nach der Widerspruch ? 

Also, soweit ich weiss ist das Higgs-Teilchen das Resultat eines Freiheitsgrades, welches sich aus dem Higgs-Feld (Skalares Feld) selbst ergibt. Für das skalare Feld muss man keine Spinoren miteinbeziehen (deswegen Spin 0)

(Obwohl schon vor Higgs einigen Forschern die Idee eines solchen Feldes gekommen ist, war doch Peter Higgs der erste, der die Notwendigkeit eines neuen Teilchens erkannte)

Die anderen sind den jeweiligen anderen Teilchen zugeordnet. Die W und Z-Bosonen usw. erhalten also die Masse aus diesem Feld, wie du ja schon geschrieben hast. Aus dem Higgs-Teilchen erhalten diese ihre Masse NICHT. 

Man darf das Higgs-Teilchen nicht (immer) mit dem Higgs-Feld gleichsetzen. Das Higgs-Teilchen wechselwirkt generell nicht viel (, soweit ich weiss. Immerhin muss es ja erzeugt werden) und sorgt nicht für die Masse. 

Kommentar von grtgrt ,

Mir ist inzwischen klar, dass es keinen Widerspruch gibt (mir war anfangs nur nicht klar, dass die Physiker auch dann noch von einem Skalarfeld reden, wenn das Feld mehrere Komponenten hat, aber keine davon Spinor ist). 

Da man Elementarteilchen ja nicht notwendig per Feldtheorie beschreiben muss, konnte ich mir nur schwer vorstellen, dass das Higgsfeld (und nicht das Higgsboson selbst) anderen Teilchen ihre Masse verleiht.

Ich stehe hier wohl an der Grenze dessen, was ich von der Idee der Theorie des Higgsfeldes gerade noch verstehen kann (bin selbst ja kein Physiker).

Kommentar von Astroknoedel ,

Ja, so geht es mir auch. Ich bin auch kein Physiker und mache das nur als Hobby, ich habe aber vor, das später zu studieren.

Kommentar von Reggid ,

Da man Elementarteilchen ja nicht notwendig per Feldtheorie beschreiben muss

wie du siehst muss man es in vielen bereichen eben doch.

Keine passende Antwort gefunden?

Fragen Sie die Community