Frage von dersnatch, 45

Welches Schaubild kann zu einer Funktion gehören?

Ich habe überhaupt keine Ahnung :D Hoffe es kann mir einer helfen :D

Hilfreichste Antwort - ausgezeichnet vom Fragesteller
von Willibergi, Community-Experte für Mathe & Mathematik, 35

Bei einer Funktion gibt es zu jedem (definierten) x-Wert genau einen y-Wert.

Es muss also für jeden x-Wert nur einen y-Wert - nur einen, nicht zwei, nicht drei, einen einzigen!

Bei a) beispielsweise gibt es aber für x-Werte rechts der y-Achse zwei y-Werte, einen unter der x-Achse und einen drüber.

Das geht aber nicht! Das ist also keine Funktion.

b) und c) sind hingegen Funktionen, denn dort gibt es für jeden x-Wert einen y-Wert.

Bei d) gibt es aber wieder zwei y-Werte, die über einander liegen, das ist also wieder keine Funktion.

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach.

LG Willibergi

Kommentar von dersnatch ,

Vielen Dank für deine schnelle und vor allem produktive Antwort

Expertenantwort
von KDWalther, Community-Experte für Mathe & Mathematik, 15

Ich habe eine Ergänzung zu Willibergi:

Ob c) tatsächlich den Graphen einer Funktion darstellt, hängt entscheidend auch davon ab, welches denn tatsächlich der Defintionsbereich ist. Denn:

"Bei einer Funktion gibt es zu jedem (definierten) x-Wert genau einen y-Wert."

Sollten also auch x-Werte "au0erhalb des Halbkreises" zum Def.-Bereich gehören, läge wiederum keine Funktion vor; denn diesen x-Werten wäre kein y-Wert zugeordnet (zumindest nicht sichtbar).

Deshalb heißt die Fragestellung ja auch: "Welches Schaubild kann zu einer Funktion gehören?" 

Wenn Du die Frage mathematisch völlig korrekt beantworten willst, müsstest Du hierauf eingehen :-)

Dass a) und d) dagegen keine Funktionen sein können, ist klar.

Keine passende Antwort gefunden?

Fragen Sie die Community